19 research outputs found

    Hydrogen Assisted Fracture of 30MnB5 High Strength Steel: A Case Study

    Get PDF
    When steel components fail in service due to the intervention of hydrogen assisted cracking, discussion of the root cause arises. The failure is frequently blamed on component design, working conditions, the manufacturing process, or the raw material. This work studies the influence of quench and tempering and hot-dip galvanizing on the hydrogen embrittlement behavior of a high strength steel. Slow strain rate tensile testing has been employed to assess this influence. Two sets of specimens have been tested, both in air and immersed in synthetic seawater, at three process steps: in the delivery condition of the raw material, after heat treatment and after heat treatment plus hot-dip galvanizing. One of the specimen sets has been tested without further manipulation and the other set has been tested after applying a hydrogen effusion treatment. The outcome, for this case study, is that fracture risk issues only arise due to hydrogen re-embrittlement in wet service

    Effect of the Martensitic Transformation on the Stamping Force and Cycle Time of Hot Stamping Parts

    Get PDF
    Stamping dies perform two functions in the hot stamping process of body-in-white components. Firstly, they form the steel sheet into the desired shape and, secondly, they quench the steel at a cooling rate that leads to hardening by means of the austenite-gamma to martensite transformation. This microstructural change implies a volume expansion that should lead to a force peak in the press, which has yet to be detected in industrial practice. In this study, a set of hot stamping laboratory tests were performed on instrumented Al-Si-coated 22MnB5 steel flat formats to analyze the effect of the stamping pressure on the detection of the expected peak. Plotting the sheet temperature and pressure curves against time allowed us to identify and understand the conditions in which the force peak can be detected. These conditions occurred most favorably when the stamping pressure is below 5 MPa. It is thus possible to determine the exact moment at which the complete hardening transformation occurs by monitoring the local pressing force of the tool in areas where the pressure exerted on the metal format is below 5 MPa. This information can be applied to optimize the time needed to open the dies in terms of the complete martensitic transformation.The authors gratefully acknowledge the funding provided by the Department of Research and Universities of the Basque Government under Grant No. IT947-16 and the University of the Basque Country UPV/EHU under Program No. UFI 11/29

    Antifragile Philosophy in R&D Projects: Applying Q Methodology and the Possibility of Open Innovation

    Get PDF
    Antifragile philosophy can be the key to improving the management of organizations that base their activity on research and development (R&D) projects. These are types of projects with the greatest uncertainty in all aspects, and the application of antifragile philosophy can result in streamlining their management and development. In this article, the Q methodology is used to investigate whether organizations in R&D environments have antifragile characteristics. To this end, 15 innovation experts from research institutes located in Northern Spain were interviewed about their position regarding project management behaviors that are related to antifragile philosophy. As a result, it was verified that the characteristics of an ideal system of a research institute with antifragile philosophy are multidisciplinary and autonomous teams with a capacity for rapid response and adaptation to the environment

    Wear And Friction Evaluation Of Different Tool Steels For Hot Stamping

    Get PDF
    The aim of this work is to investigate the durability of tool steels for hot stamping by comparing the wear resistance of three hot work tool steels. Friction and wear behaviours of different tool steels sliding against a 22MnB5 uncoated steel at elevated temperatures were investigated using a high-temperature version of the Optimol SRV reciprocating friction and wear tester at temperatures of 40 and 200°C. Our results show that friction decreased with increasing temperature, whereas wear of the tool steel increased with temperature for the second and the third tested tool steels. The slightly better wear behaviour of steel specimen 1 comes from the hardness of the carbides in the martensitic microstructure, which are rich in vanadium.The authors gratefully acknowledge the funding provided by the Department of Research and Universities of the Basque Government under Grant no. IT947-16 and the University of the Basque Country UPV/EHU under Program no. UFI 11/29

    Retained Austenite Control for the Soft Machining of High-Hardness Tool Steels

    Get PDF
    Most high-hardness tool steels comprising forming dies require expensive finish machining operations to compensate for the dimensional distortion and surface oxidation caused by the die heat treatment. Precipitation-hardening (PH) tool steels allow for soft finish machining followed by an aging treatment without major deformation or oxidation in the die, but exhibit poor wear performance owing to the lack of carbides in their structure. This drawback can be overcome by combining laser cladding technology, austenite retention, and cryogenic treatments. Hence, an alternative die manufacturing route based on laser cladding was explored. The forming surface of a modified chemistry tool steel die was subjected to cladding. The martensite finish (M-f) temperature of the steel was tuned to enhance austenite retention at room temperature. The cladded surface was then machined in a reduced-hardness condition resulting from retained austenite formation. Subsequent deep cryogenic treatment of the die favoured the retained-austenite-to-martensite transformation, thereby increasing the die hardness without major distortion or oxidation. This process combined the advantages of high-carbide-bearing tool steels and PH steels, allowing for a die with hardness exceeding 58 HRC to be finish machined at <52 HRC. Controlling the occurrence of retained austenite represents an effective strategy for achieving new manufacturing scenarios.The authors gratefully acknowledge the funding provided by the Department of Research and Universities of the Basque Government under Grant No. IT947-16 and the University of the Basque Country UPV/EHU under Program No. UFI 11/29

    Influence of the Laser Deposited 316L Single Layers on Corrosion in Physiological Media

    Get PDF
    [EN] A multilayer laser-deposited lining of AISI 316L stainless steel makes a regular structural steel surface corrosion resistant in physiological media. Despite the application of single-layer stainless-steel linings being economically beneficial and allowing thinner surface modifications, dilution effects that modify the pitting resistance of the coating must be accounted for. In order to study the feasibility of employing single-layer coatings instead of multilayer coatings for corrosion protection in physiological media, a polarization testing back-to-back comparison was performed between laser-deposited AISI 316L monolayers on 42CrMo4 quenched and tempered steel and cold-rolled AISI 316L sheet in Dulbecco’s Phosphate Buffer Solution at 36 °C. A higher dispersion in pitting resistance, ranging from 800 mV to 1200 mV, was found on the coated samples, whereas the cold-rolled material was more stable in the 1200 mV range. The resulting differences in corrosion rates and pitting potentials open the discussion on whether the chemical composition deviations on AISI 316L dilution layers are acceptable in terms of surface functionality in medical device

    Chunky Graphite in Low and High Silicon Spheroidal Graphite Cast Irons–Occurrence, Control and Effect on Mechanical Properties

    Get PDF
    Chunky graphite appears easily in heavy-section spheroidal graphite cast irons and is known to affect their mechanical properties. A dedicated experiment has been developed to study the effect of the most important chemical variables reported to change the amount of chunky graphite, namely the content in silicon and in rare earths. Quite unexpectedly, controlled rare earths contents appear beneficial for decreasing chunky graphite when using standard charge materials. Tin is shown to decrease chunky graphite appearance and it is evidenced that this effect is not related to rare earths. Finally, the effect of tin and antimony are compared and it is noticed that both suppress chunky graphite but also lead to some spiky graphite when no rare earth is added. Chunky graphite negatively affects the room temperature mechanical properties, though much more in the case of low silicon spheroidal graphite cast irons than in high silicon ones. Spiky graphite has been found to be much more detrimental and should thus be avoided

    Hydrogen Assisted Fracture of 30MnB5 High Strength Steel: A Case Study

    No full text
    When steel components fail in service due to the intervention of hydrogen assisted cracking, discussion of the root cause arises. The failure is frequently blamed on component design, working conditions, the manufacturing process, or the raw material. This work studies the influence of quench and tempering and hot-dip galvanizing on the hydrogen embrittlement behavior of a high strength steel. Slow strain rate tensile testing has been employed to assess this influence. Two sets of specimens have been tested, both in air and immersed in synthetic seawater, at three process steps: in the delivery condition of the raw material, after heat treatment and after heat treatment plus hot-dip galvanizing. One of the specimen sets has been tested without further manipulation and the other set has been tested after applying a hydrogen effusion treatment. The outcome, for this case study, is that fracture risk issues only arise due to hydrogen re-embrittlement in wet service

    Microstructural Tuning of a Laser-Cladding Layer by Means of a Mix of Commercial Inconel 625 and AISI H13 Powders

    No full text
    The aim of this work is to evaluate the microstructural evolutions developed by mixing a corrosion-resistant and high-performance material with a high-hardness material in a coating obtained by laser-cladding technology. In this paper, five different mixtures of Inconel 625 alloy and AISI H13 steel powders have been deposited on a plate of 42CrMo4 steel using a 2.2 kW diode pumped Nd:YAG laser. The effect of adding tool steel to a Ni-based superalloy has been analyzed by the characterization of each cladded sample using optical microscopy and scanning electron microscopy (SEM). The precipitates observed in the samples have been analyzed by energy dispersive X-ray spectroscopy (EDS X-ray). SEM micrographs and EDS analysis indicate the existence of Laves phase. It has been observed that the presence of these precipitates is stabilized in a certain range of AISI H13 addition

    Hydrogen Embrittlement Susceptibility of R4 and R5 High-Strength Mooring Steels in Cold and Warm Seawater

    Get PDF
    Hydrogen embrittlement susceptibility ratios calculated from slow strain rate tensile tests have been employed to study the response of three high-strength mooring steels in cold and warm synthetic seawater. The selected nominal testing temperatures have been 3 &deg;C and 23 &deg;C in order to resemble sea sites of offshore platform installation interest, such as the North Sea and the Gulf of Mexico, respectively. Three scenarios have been studied for each temperature: free corrosion, cathodic protection and overprotection. An improvement on the hydrogen embrittlement tendency of the steels has been observed when working in cold conditions. This provides a new insight on the relevance of the seawater temperature as a characteristic to be taken into account for mooring line design in terms of hydrogen embrittlement assessment
    corecore