115 research outputs found
Characterization of a clonal human colon adenocarcinoma line intrinsically resistant to doxorubicin.
Intrinsic low-level resistance to anti-cancer drugs is a major problem in the treatment of gastrointestinal malignancies. To address the problem presented by intrinsically resistant tumours, we have isolated two monoclonal lines from LoVo human colon adenocarcinoma cells: LoVo/C7, which is intrinsically resistant to doxorubicin (DOX); and LoVo/C5, which shows the same resistance index for DOX as the mixed parental cell population. For comparison, we have included in the study a LoVo-resistant line selected by continuous exposure to DOX and expressing a typical multidrug resistant (MDR) phenotype. In these cell lines we have studied the expression and/or activity of a number of proteins, including P-glycoprotein 170 (P-gp), multidrug resistance-associated protein (MRP), lung resistance-related protein (LRP), glutathione (GSH)-dependent enzymes and protein kinase C (PKC) isoforms, which have been implicated in anti-cancer drug resistance. Intracellular DOX distribution has been assessed by confocal microscopy. The results of the present study indicate that resistance in LoVo/C7 cells cannot be attributed to alterations in P-gp, LRP or GSH/GSH-dependent enzyme levels. Increased expression of MRP, accompanied by alterations in the subcellular distribution of DOX, has been observed in LoVo/C7 cells; changes in PKC isoform pattern have been detected in both intrinsically and pharmacologically resistant cells
Role of the p53/p21 system in the response of human colon carcinoma cells to Doxorubicin
BACKGROUND: Colon adenocarcinomas are refractory to a number of widely used anticancer agents. Multifactorial mechanisms have been implicated in this intrinsically resistant phenotype, including deregulation of cell death pathways. In this regard, the p53 protein has a well established role in the control of tumor cell response to DNA damaging agents; however, the relationship between p53-driven genes and drug sensitivity remains controversial. The present study investigates the role of the p53/p21 system in the response of human colon carcinoma cells to treatment with the cytotoxic agent doxorubicin (DOX) and the possibility to modify the therapeutic index of DOX by modulation of p53 and/or p21 protein levels. METHODS: The relationship between p53 and p21 protein levels and the cytotoxic effect of DOX was investigated, by MTT assay and western blot analysis, in HCT116 (p53-positive) and HT29 (p53-negative) colon cancer cells. We then assessed the effects of DOX in two isogenic cell lines derived from HCT116 by abrogating the expression and/or function of p53 and p21 (HCT116-E6 and HCT116 p21-/-, respectively). Finally, we evaluated the effect of pre-treatment with the piperidine nitroxide Tempol (TPL), an agent that was reported to induce p21 expression irrespective of p53 status, on the cytotoxicity of DOX in the four cell lines. Comparisons of IC50 values and apoptotic cell percentages were performed by ANOVA and Bonferroni's test for independent samples. C.I. calculations were performed by the combination Index method. RESULTS: Our results indicate that, in the colon carcinoma cell lines tested, sensitivity to DOX is associated with p21 upregulation upon drug exposure, and DOX cytotoxicity is potentiated by pre-treatment with TPL, but only in those cell lines in which p21 can be upregulated. CONCLUSIONS: p21 induction may significantly contribute to the response of colon adenocarcinomas cells to DOX treatment; and small molecules that can exploit p53-independent pathways for p21 induction, such as TPL, may find a place in chemotherapeutic protocols for the clinical management of colorectal cancer, where p53 function is often lost, due to genetic or epigenetic defects or to post-transcriptional inactivating mechanisms
Gene expression profiling integrated into network modelling reveals heterogeneity in the mechanisms of BRCA1 tumorigenesis
Background: gene expression profiling has distinguished sporadic breast tumour classes with genetic and clinical differences. Less is known about the molecular classification of familial breast tumours, which are generally considered to be less heterogeneous. Here, we describe molecular signatures that define BRCA1 subclasses depending on the expression of the gene encoding for oestrogen receptor, ESR1. Methods: for this purpose, we have used the Oncochip v2, a cancer-related cDNA microarray to analyze 14 BRCA1-associated breast tumours. Results: signatures were found to be molecularly associated with different biological processes and transcriptional regulatory programs. The signature of ESR1-positive tumours was mainly linked to cell proliferation and regulated by ER, whereas the signature of ESR1-negative tumours was mainly linked to the immune response and possibly regulated by transcription factors of the REL/NFκB family. These signatures were then verified in an independent series of familial and sporadic breast tumours, which revealed a possible prognostic value for each subclass. Over-expression of immune response genes seems to be a common feature of ER-negative sporadic and familial breast cancer and may be associated with good prognosis. Interestingly, the ESR1-negative tumours were substratified into two groups presenting slight differences in the magnitude of the expression of immune response transcripts and REL/NFκB transcription factors, which could be dependent on the type of BRCA1 germline mutation. Conclusion: this study reveals the molecular complexity of BRCA1 breast tumours, which are found to display similarities to sporadic tumours, and suggests possible prognostic implications
Significant loss of mitochondrial diversity within the last century due to extinction of peripheral populations in eastern gorillas
Species and populations are disappearing at an alarming rate as a direct result of human activities. Loss of genetic diversity associated with population decline directly impacts species' long-term survival. Therefore, preserving genetic diversity is of considerable conservation importance. However, to assist in conservation efforts, it is important to understand how genetic diversity is spatially distributed and how it changes due to anthropogenic pressures. In this study, we use historical museum and modern faecal samples of two critically endangered eastern gorilla taxa, Grauer's (Gorilla beringei graueri) and mountain gorillas (Gorilla beringei beringei), to directly infer temporal changes in genetic diversity within the last century. Using over 100 complete mitochondrial genomes, we observe a significant decline in haplotype and nucleotide diversity in Grauer's gorillas. By including historical samples from now extinct populations we show that this decline can be attributed to the loss of peripheral populations rather than a decrease in genetic diversity within the core range of the species. By directly quantifying genetic changes in the recent past, our study shows that human activities have severely impacted eastern gorilla genetic diversity within only four to five generations. This rapid loss calls for dedicated conservation actions, which should include preservation of the remaining peripheral populations.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Specie esotiche invasive di rilevanza unionale in Italia: aggiornamenti e integrazioni
La Commissione Europea (CE) ha inserito ad oggi 36 taxa esotici vegetali nella lista delle specie esotiche invasive di rilevanza unionale ai sensi del Regolamento (UE) n. 1143/2014 del Parlamento Europeo e del Consiglio, recante disposizioni volte a prevenire e gestire l’introduzione e la diffusione delle specie esotiche invasive. La lista delle specie di rilevanza unionale viene periodicamente aggiornata e include quelle specie che rappresentano una grave minaccia per la biodiversità, ma anche per la salute dei cittadini e le attività economiche nei territori dell’Unione Europea e che necessitano di una gestione concertata a livello comunitario. La CE vigila sullo stato di ogni taxon grazie anche a periodiche rendicontazioni da parte dei paesi dell'Unione. In vista di tali report, tra il 2020 e il 2021 è stata definita e integrata la distribuzione di queste specie in Italia
A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system
BACKGROUND: This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. DISCUSSION: The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from disease. SUMMARY: Homeopathic remedies are proposed as source nanoparticles that mobilize hormesis and time-dependent sensitization via non-pharmacological effects on specific biological adaptive and amplification mechanisms. The nanoparticle nature of remedies would distinguish them from conventional bulk drugs in structure, morphology, and functional properties. Outcomes would depend upon the ability of the organism to respond to the remedy as a novel stressor or heterotypic biological threat, initiating reversals of cumulative, cross-adapted biological maladaptations underlying disease in the allostatic stress response network. Systemic resilience would improve. This model provides a foundation for theory-driven research on the role of nanomaterials in living systems, mechanisms of homeopathic remedy actions and translational uses in nanomedicine
Comparison on photodynamic activity among pyridylporphyrins alkylated with four different alkylchain
- …