31 research outputs found

    Rapid progression and mortality of lysosomal acid lipase deficiency presenting in infants

    Get PDF
    PurposeThe purpose of this study was to enhance understanding of lysosomal acid lipase deficiency (LALD) in infancy.MethodsInvestigators reviewed medical records of infants with LALD and summarized data for the overall population and for patients with and without early growth failure (GF). Kaplan-Meier survival analyses were conducted for the overall population and for treated and untreated patients.ResultsRecords for 35 patients, 26 with early GF, were analyzed. Prominent symptom manifestations included vomiting, diarrhea, and steatorrhea. Median age at death was 3.7 months; estimated probability of survival past age 12 months was 0.114 (95% confidence interval (CI): 0.009-0.220). Among patients with early GF, median age at death was 3.5 months; estimated probability of survival past age 12 months was 0.038 (95% CI: 0.000-0.112). Treated patients (hematopoietic stem cell transplant (HSCT), n = 9; HSCT and liver transplant, n = 1) in the overall population and the early GF subset survived longer than untreated patients, but survival was still poor (median age at death, 8.6 months).ConclusionsThese data confirm and expand earlier insights on the progression and course of LALD presenting in infancy. Despite variations in the nature, onset, and severity of clinical manifestations, and treatment attempts, clinical outcome was poor.Genet Med 18 5, 452-458

    Channelopathy pathogenesis in autism spectrum disorders.

    Get PDF
    Autism spectrum disorder (ASD) is a syndrome that affects normal brain development and is characterized by impaired social interaction as well as verbal and non-verbal communication and by repetitive, stereotypic behavior. ASD is a complex disorder arising from a combination of multiple genetic and environmental factors that are independent from racial, ethnic and socioeconomical status. The high heritability of ASD suggests a strong genetic basis for the disorder. Furthermore, a mounting body of evidence implies a role of various ion channel gene defects (channelopathies) in the pathogenesis of autism. Indeed, recent genome-wide association, and whole exome- and whole-genome resequencing studies linked polymorphisms and rare variants in calcium, sodium and potassium channels and their subunits with susceptibility to ASD, much as they do with bipolar disorder, schizophrenia and other neuropsychiatric disorders. Moreover, animal models with these genetic variations recapitulate endophenotypes considered to be correlates of autistic behavior seen in patients. An ion flux across the membrane regulates a variety of cell functions, from generation of action potentials to gene expression and cell morphology, thus it is not surprising that channelopathies have profound effects on brain functions. In the present work, we summarize existing evidence for the role of ion channel gene defects in the pathogenesis of autism with a focus on calcium signaling and its downstream effects
    corecore