85 research outputs found

    Tuning the magnetic coupling of a molecular spin interface via electron doping

    Get PDF
    Mastering the magnetic response of molecular spin interfaces by tuning the occupancy of the molecular orbitals, which carry the spin magnetic moment, can be accomplished by electron doping. We propose a viable route to control the magnetization direction and magnitude of a molecular spin network, in a graphene-mediated architecture, achieved via alkali doping of manganese phthalocyanine (MnPc) molecules assembled on cobalt intercalated under a graphene membrane. The antiparallel magnetic alignment of the MnPc molecules with the underlying Co layer can be switched to a ferromagnetic state by electron doping. Multiplet calculations unveil an enhanced magnetic state of the Mn centers with a 3/2 to 5/2 spin transition induced by alkali doping, as confirmed by the steepening of the hysteresis loops, with higher saturation magnetization values. This new molecular spin configuration can be aligned by an external field, almost independently from the hard-magnet substrate effectively behaving as a free magnetic layer

    Graphene-based synthetic antiferromagnets and ferrimagnets

    Get PDF
    Graphene-spaced magnetic systems with antiferromagnetic exchange-coupling offer exciting opportunities for emerging technologies. Unfortunately, the in-plane graphene-mediated exchange-coupling found so far is not appropriate for realistic exploitation, due to being weak, being of complex nature, or requiring low temperatures. Here we establish that ultra-thin Fe/graphene/Co films grown on Ir(111) exhibit robust perpendicular antiferromagnetic exchange-coupling, and gather a collection of magnetic properties well-suited for applications. Remarkably, the observed exchange coupling is thermally stable above room temperature, strong but field controllable, and occurs in perpendicular orientation with opposite remanent layer magnetizations. Atomistic first-principles simulations provide further ground for the feasibility of graphene-spaced antiferromagnetic coupled structures, confirming graphene's direct role in sustaining antiferromagnetic superexchange-coupling between the magnetic films. These results provide a path for the realization of graphene-based perpendicular synthetic antiferromagnetic systems, which seem exciting for fundamental nanoscience or potential use in spintronic devices

    Magnetic response and electronic states of well defined Graphene/Fe/Ir(111) heterostructure

    Get PDF
    We investigate a well defined heterostructure constituted by magnetic Fe layers sandwiched between graphene (Gr) and Ir(111). The challenging task to avoid Fe-C solubility and Fe-Ir intermixing has been achieved with atomic controlled Fe intercalation at moderate temperature below 500 K. Upon intercalation of a single ordered Fe layer in registry with the Ir substrate, an intermixing of the Gr bands and Fe d states breaks the symmetry of the Dirac cone, with a downshift in energy of the apex by about 3 eV, and well-localized Fe intermixed states induced in the energy region just below the Fermi level. First principles electronic structure calculations show a large spin splitting of the Fe states, resulting in a majority spin channel almost fully occupied and strongly hybridized with Gr π states. X-ray magnetic circular dichroism on the Gr/Fe/Ir heterostructure reveals an ordered spin configuration with a ferromagnetic response of Fe layer(s), with enhanced spin and orbital configurations with respect to the bcc-Fe bulk values. The magnetization switches from a perpendicular easy magnetization axis when the Fe single layer is lattice matched with the Ir(111) surface to a parallel one when the Fe thin film is almost commensurate with graphene

    Effect of the valence state on the band magnetocrystalline anisotropy in two-dimensional rare-earth/noble-metal compounds

    Get PDF
    [EN] In intermetallic compounds with zero orbital momentum (L = 0) the magnetic anisotropy and the electronic band structure are interconnected. Here, we investigate this connection in divalent Eu and trivalent Gd intermetallic compounds. We find by x-ray magnetic circular dichroism an out-of-plane easy magnetization axis in two-dimensional atom-thick EuAu2. Angle-resolved photoemission spectroscopy and density-functional theory prove that this is due to strong f-d band hybridization and Eu2+ valence. In contrast, the easy in-plane magnetization of the structurally equivalent GdAu2 is ruled by spin-orbit-split d bands, notably Weyl nodal lines, occupied in the Gd3+ state. Regardless of the L value, we predict a similar itinerant electron contribution to the anisotropy of analogous compounds.Discussions with the late J. I. Cerda are warmly thanked. Financial support from Spanish Ministerio deCiencia e Innovacion (projects MAT-2017-88374-P, PID2020-116093RB-C44 and PID2019-103910GB-I00 funded by MCIN/AEI/10.13039/501100011033/) , the Basque Govern-ment (Grants No. IT-1255-19 and No. IT1260-19) , and the University of the Basque Country UPV/EHU (Grant No. GIU18/138) is acknowledged. L.F. acknowledges funding from the European Union's Horizon 2020 research and in-novation programme through the Marie Skodowska-Curie Grant Agreement MagicFACE No. 797109. We acknowl-edge SOLEIL for provision of synchrotron radiation facilities at CASSIOPEE beamline under proposal 20181362. The XMCD experiments were performed at BOREAS beamline at ALBA Synchrotron with the collaboration of ALBA staff. Computational resources were provided by DIPC

    High-temperature magnetic blocking in a monometallic dysprosium azafullerene single-molecule magnet

    Get PDF
    Single-molecule magnets (SMMs) showing magnetic blocking near or above liquid nitrogen temperature have recently been achieved by inducing exceptionally strong and axial crystal fields via double decker ligands. However, further enhancing the performance at higher temperatures becomes a formidable task. Here we provide an alternative strategy to advance towards this goal by entrapping a single dysprosium(III) ion within a nitrogen-substituted carbon cage. In this structure of Dy@C81N, DyIII is asymmetrically coordinated by one side to a hexagonal carbon ring of the azafullerene, while lacking any coordination ligand on the other side. Despite the very weak crystal field resulting from this very unusual low-coordination environment, this compound exhibits a high blocking temperature (TB, defined as T(t100s)) of 45 K. Its extraordinary magnetic behavior is attributed to the minimal number of vibrations that couple to its spin states, being also responsible for the unusual slow Raman relaxation mechanism observed at high temperatures

    Independent Tuning of Optical Transparency Window and Electrical Properties of Epitaxial SrVO3 Thin Films by Substrate Mismatch

    Get PDF
    Transparent metallic oxides are pivotal materials in information technology, photovoltaics, or even in architecture. They display the rare combination of metallicity and transparency in the visible range because of weak interband photon absorption and weak screening of free carriers to impinging light. However, the workhorse of current technology, indium tin oxide (ITO), is facing severe limitations and alternative approaches are needed. AMO perovskites, M being a nd transition metal, and A an alkaline earth, have a genuine metallic character and, in contrast to conventional metals, the electron-electron correlations within the nd band enhance the carriers effective mass (m*) and bring the transparency window limit (marked by the plasma frequency, ω*) down to the infrared. Here, it is shown that epitaxial strain and carrier concentration allow fine tuning of optical properties (ω*) of SrVO films by modulating m* due to strain-induced selective symmetry breaking of 3d-t(xy, yz, xz) orbitals. Interestingly, the DC electrical properties can be varied by a large extent depending on growth conditions whereas the optical transparency window in the visible is basically preserved. These observations suggest that the harsh conditions required to grow optimal SrVO films may not be a bottleneck for their future application

    FePc Adsorption on the Moir\'e Superstructure of Graphene Intercalated with a Co Layer

    Get PDF
    The moir\'e superstructure of graphene grown on metals can drive the assembly of molecular architectures, as iron-phthalocyanine (FePc) molecules, allowing for the production of artificial molecular configurations. A detailed analysis of the Gr/Co interaction upon intercalation (including a modelling of the resulting moir\'e pattern) is performed here by density functional theory, which provides an accurate description of the template as a function of the corrugation parameters. The theoretical results are a preliminary step to describe the interaction process of the FePc molecules adsorption on the Gr/Co system. Core level photoemission and absorption spectroscopies have been employed to control the preferential adsorption regions of the FePc on the graphene moir\'e superstructure and the interaction of the central Fe ion with the underlying Co. Our results show that upon molecular adsorption the distance of C atoms from the Co template mainly drives the strength of the molecules-substrate interaction, thereby allowing for locally different electronic properties within the corrugated interface.Comment: This document is the Accepted Manuscript version of a Published Work that appeared in final form in J. Phys. Chem. C , copyright \c{opyright} American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.jpcc.6b0987
    • …
    corecore