107 research outputs found

    Proton-air cross section measurement with the ARGO-YBJ cosmic ray experiment

    Get PDF
    The proton-air cross section in the energy range 1-100 TeV has been measured by the ARGO-YBJ cosmic ray experiment. The analysis is based on the flux attenuation for different atmospheric depths (i.e. zenith angles) and exploits the detector capabilities of selecting the shower development stage by means of hit multiplicity, density and lateral profile measurements at ground. The effects of shower fluctuations, the contribution of heavier primaries and the uncertainties of the hadronic interaction models, have been taken into account. The results have been used to estimate the total proton-proton cross section at center of mass energies between 70 and 500 GeV, where no accelerator data are currently available.Comment: 14 pages, 9 figure

    Mean Interplanetary Magnetic Field Measurement Using the ARGO-YBJ Experiment

    Get PDF
    The sun blocks cosmic ray particles from outside the solar system, forming a detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ experiment in Tibet. Because the cosmic ray particles are positive charged, the magnetic field between the sun and the earth deflects them from straight trajectories and results in a shift of the shadow from the true location of the sun. Here we show that the shift measures the intensity of the field which is transported by the solar wind from the sun to the earth.Comment: 6 papges,3 figure

    Search for Gamma Ray Bursts with the Argo-YBJ Detector in Scaler Mode

    Get PDF
    We report on the search for Gamma Ray Bursts (GRBs) in the energy range 1-100 GeV in coincidence with the prompt emission detected by satellites using the Astrophysical Radiation with Ground-based Observatory at YangBaJing (ARGO-YBJ) air shower detector. Thanks to its mountain location (Yangbajing, Tibet, P.R. China, 4300 m a.s.l.), active surface (about 6700 m**2 of Resistive Plate Chambers), and large field of view (about 2 sr, limited only by the atmospheric absorption), the ARGO-YBJ air shower detector is particularly suitable for the detection of unpredictable and short duration events such as GRBs. The search is carried out using the "single particle technique", i.e. counting all the particles hitting the detector without measurement of the energy and arrival direction of the primary gamma rays. Between 2004 December 17 and 2009 April 7, 81 GRBs detected by satellites occurred within the field of view of ARGO-YBJ (zenith angle < 45 deg). It was possible to examine 62 of these for >1 GeV counterpart in the ARGO-YBJ data finding no statistically significant emission. With a lack of detected spectra in this energy range fluence upper limits are profitable, especially when the redshift is known and the correction for the extragalactic absorption can be considered. The obtained fluence upper limits reach values as low as 10**{-5} erg cm**{-2} in the 1-100 GeV energy region. Besides this individual search for a higher energy counterpart, a statistical study of the stack of all the GRBs both in time and in phase was made, looking for a common feature in the GRB high energy emission. No significant signal has been detected.Comment: accepted for publication in Ap

    Gamma ray flares from Mrk421 in 2008 observed with the ARGO-YBJ detector

    Get PDF
    In 2008 the blazar Markarian 421 entered a very active phase and was one of the brightest sources in the sky at TeV energies, showing frequent flaring episodes. Using the data of ARGO-YBJ, a full coverage air shower detector located at Yangbajing (4300 m a.s.l., Tibet, China), we monitored the source at gamma ray energies E > 0.3 TeV during the whole year. The observed flux was variable, with the strongest flares in March and June, in correlation with X-ray enhanced activity. While during specific episodes the TeV flux could be several times larger than the Crab Nebula one, the average emission from day 41 to 180 was almost twice the Crab level, with an integral flux of (3.6 +-0.6) 10^-11 photons cm^-2 s^-1 for energies E > 1 TeV, and decreased afterwards. This paper concentrates on the flares occurred in the first half of June. This period has been deeply studied from optical to 100 MeV gamma rays, and partially up to TeV energies, since the moonlight hampered the Cherenkov telescope observations during the most intense part of the emission. Our data complete these observations, with the detection of a signal with a statistical significance of 3.8 standard deviations on June 11-13, corresponding to a gamma ray flux about 6 times larger than the Crab one above 1 TeV. The reconstructed differential spectrum, corrected for the intergalactic absorption, can be represented by a power law with an index alpha = -2.1 extending up to several TeV. The spectrum slope is fully consistent with previous observations reporting a correlation between the flux and the spectral index, suggesting that this property is maintained in different epochs and characterizes the source emission processes.Comment: Accepted for publication on ApJ

    !CHAOS: A cloud of controls

    Get PDF
    The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of abstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack

    Observation of CR Anisotropy with ARGO-YBJ

    Get PDF
    The measurement of the anisotropies of cosmic ray arrival direction provides important informations on the propagation mechanisms and on the identification of their sources. In this paper we report the observation of anisotropy regions at different angular scales. In particular, the observation of a possible anisotropy on scales between ∌\sim 10 ∘^{\circ} and ∌\sim 30 ∘^{\circ} suggests the presence of unknown features of the magnetic fields the charged cosmic rays propagate through, as well as potential contributions of nearby sources to the total flux of cosmic rays. Evidence of new weaker few-degree excesses throughout the sky region 195∘≀195^{\circ}\leq R.A. ≀315∘\leq 315^{\circ} is reported for the first time.Comment: Talk given at 12th TAUP Conference 2011, 5-9 September 2011, Munich, German

    First results on the angular resolution of the ARGO-YBJ detector

    Get PDF
    We present the first results on the angular resolution of the ARGO-YBJ detector in data taking at the Yangbajing Laboratory (Tibet, P.R. China, 4300 m a.s.l.

    Highlights from the ARGO-YBJ experiment

    Get PDF
    The ARGO-YBJ experiment at YangBaJing in Tibet (4300 m a.s.l.) has been taking data with its full layout since October 2007. Here we present a few signiïŹcant results obtained in gamma-ray astronomy and cosmic-ray physics. Emphasis is placed on the analysis of gamma-ray emission from point-like sources (Crab Nebula, MRK 421), on the preliminary limit on the antiproton/proton ïŹ‚ux ratio, on the large-scale cosmic-ray anisotropy and on the proton–air cross-section. The performance of the detector is also discussed, and the perspectives of the experiment are outlined
    • 

    corecore