26 research outputs found

    Neutrino propagation in the Earth and emerging charged leptons with nuPyProp\texttt{nuPyProp}

    Full text link
    Ultra-high-energy neutrinos serve as messengers of some of the highest energy astrophysical environments. Given that neutrinos are neutral and only interact via weak interactions, neutrinos can emerge from sources, traverse astronomical distances, and point back to their origins. Their weak interactions require large target volumes for neutrino detection. Using the Earth as a neutrino converter, terrestrial, sub-orbital, and satellite-based instruments are able to detect signals of neutrino-induced extensive air showers. In this paper, we describe the software code nuPyProp\texttt{nuPyProp} that simulates tau neutrino and muon neutrino interactions in the Earth and predicts the spectrum of the Ď„\tau-lepton and muons that emerge. The nuPyProp\texttt{nuPyProp} outputs are lookup tables of charged lepton exit probabilities and energies that can be used directly or as inputs to the nuSpaceSim\texttt{nuSpaceSim} code designed to simulate optical and radio signals from extensive air showers induced by the emerging charged leptons. We describe the inputs to the code, demonstrate its flexibility and show selected results for Ď„\tau-lepton and muon exit probabilities and energy distributions. The nuPyProp\texttt{nuPyProp} code is open source, available on github.Comment: 42 pages, 21 figures, code available at https://github.com/NuSpaceSim/nupypro

    The ABC130 barrel module prototyping programme for the ATLAS strip tracker

    Full text link
    For the Phase-II Upgrade of the ATLAS Detector, its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100 % silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-25) and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.Comment: 82 pages, 66 figure

    Electronic structure and ultrafast fragmentation dynamics of polycyclic aromatic hydrocarbons

    No full text
    The interstellar space is filled with numerous molecules. The interaction of the interstellar radiation with these molecules play an active role in maintaining the charge balance of the interstellar medium and governs the photochemical and photophysical processes. Since the polycyclic aromatic hydrocarbons (PAH) molecules contains 10% of the total galactic carbon content, these molecules are of astrochemical interest. In this dissertation, the interaction of such class of molecules with the harsh radiation (extreme ultraviolet, infrared, visible, and soft X-rays) is investigated, and the electronic structural and dynamical information is extracted. The electronic structures of monocationic and dehydrogenated monocationic phenanthrene, a small PAH, are explored using near edge x-ray absorption fine structure spectroscopy at carbon K-edge. Furthermore, the average relaxation lifetimes of vibronically excited fluorene, another small PAH, in its monocation and dication form are also reported after thorough investigation of their fragmentation patterns and pathways. To study the fragmentation dynamics of fluorene, we used ultrafast time-resolved XUV-Vis and IR-Vis pump-probe spectroscopy. This thesis provides the detailed description of the experimental, theoretical, and analytical methods used to obtained the understanding of electronic structure and fragmentation dynamics of small PAHs.The large-scale facilities at Deutsches Elektronen Synchrotron (DESY) in Hamburg, namely, Positron-Elektron-Tandem-Ring-Anlage (PETRA) III and the Free-electron LASer in Hamburg (FLASH) were used to provide adequate tools to perform the experiments. The results obtained thus give a detailed insight into the photophysics of the PAHs, which is crucial to understand the vast interstellar medium

    Molecularly Imprinted Polymer-Based Electrochemical Sensor for Rapid and Selective Detection of Hypoxanthine

    No full text
    In this paper, we report on the coupling of an electrochemical transducer with a specifically designed biomimetic and synthetic polymeric layer that serves as a recognition surface that demonstrates the molecular memory necessary to facilitate the stable and selective identification of the meat-freshness indicator hypoxanthine. Consumer preferences and the food safety of meat products are largely influenced by their freshness, so it is crucial to monitor it so as to quickly identify when it deteriorates. The sensor consists of a glassy-carbon electrode, which can be regenerated in situ continuously, functionalized with molecularly imprinted polymers (MIPs) and a nanocomposite of curcumin-coated iron oxide magnetic nanospheres (C-IO-MNSs) and multiwalled carbon nanotubes (MWCNTs) that enhance the surface area as well as the electroactive characteristics. The electrochemical behavior of the fabricated sensor was analyzed by both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Differential pulse voltammetric studies revealed the rapid response of the proposed sol-gel-MIP/MWCNT/C-IO-MNS/GCE sensor to hypoxanthine in a concentration range of 2–50 µg/mL with a lower limit of detection at 0.165 μg/mL. Application of the newly fabricated sensor demonstrated acceptable recoveries and satisfactory accuracy when used to measure hypoxanthine in different meat samples

    Probing quantum gravity with elastic interactions of ultrahigh-energy neutrinos

    No full text
    The next generation of radio telescopes will be sensitive to low-scale quantum gravity by measuring ultrahigh-energy neutrinos. In this work, we demonstrate for the first time that neutrino-nucleon soft interactions induced by TeV-scale gravity would significantly increase the number of events detected by the IceCube-Gen2 radio array in the EeV regime. However, we show that these experiments cannot measure the total cross section using only the angular and energy information of the neutrino flux, unless assumptions on the underlying inelasticity distribution of neutral interactions are made.A. G.acknowledges support from the European Union’s H2020-MSCA Grant Agreement No. 101025085. D. G. and M. H. R. are supported in part by US DOE Grant No. DE-SC-0010113. C. A. A. is supported by the Faculty of Arts and Sciences of Harvard University and the Alfred P. Sloan Foundation

    Addressing three-body fragmentation of methane dication using “native frames”: Evidence of internal excitation in fragments

    No full text
    International audienceThe three body fragmentation of methane dication has been studied using the technique of cold target recoil ion momentum spectroscopy. The process is initiated by impact of energetic Ar9+ ions on neutral methane and the data is subsequently collected in coincidence with Ar8+ projectile. By analysing the dissociation channels leading to (H + H+ + CH2+) and (H + H2+ + CH+) fragments, it is concluded that these fragments are formed in a sequential manner via formation of molecular intermediates CH3+ and CH2+ respectively. It is shown that these molecular intermediates carry a few eVs as their internal energies, part of which is released when they emit an H-atom with the open possibility that the final detected fragments may still be internally excited. This was accomplished by analysing the two-steps of the sequential process in their own native frames. For a molecular system having three-dimensional structure, our results prove to be an ideal example to highlight the importance of using native frames for correct interpretation of the obtained results. Our results indicate that the dissociation of methane dication can be a major source of production of H-atoms in addition to H+ fragments with the probability of the two being of similar order

    Tau depolarization at very high energies for neutrino telescopes

    Full text link
    The neutrino interaction length scales with energy, and becomes comparable to Earth's diameter above 10's of TeV energies. Over terrestrial distances, the tau's short lifetime leads to an energetic regenerated tau neutrino flux, tau neutrino to tau to tau neutrino, within the Earth. The next generation of neutrino experiments aim to detect ultra-high energy neutrinos. Many of them rely on detecting either the regenerated tau neutrino, or a tau decay shower. Both of these signatures can be affected by the polarization of the tau through the energy distribution of the secondary particles produced from the tau's decay. While taus produced in weak interactions are nearly 100 percent polarized, it is expected that taus experience some depolarization due to electromagnetic interactions in the Earth. In this paper, for the first time we quantify the depolarization of taus in electromagnetic energy loss. We find that tau depolarization has only small effects on the final energy of tau neutrinos or taus produced by high energy tau neutrinos incident on the Earth. Tau depolarization can be directly implemented in Monte Carlo simulations such as nuPyProp and TauRunner.Comment: 11 pages, 6 figure
    corecore