61 research outputs found

    Pharmacodynamic therapeutic drug monitoring for cancer: challenges, advances, and future opportunities

    Get PDF
    In the modern era of cancer treatment, with targeted agents superseding more traditional cytotoxic chemotherapeutics, it is becoming increasingly important to use stratified medicine approaches to ensure that patients receive the most appropriate drugs and treatment schedules. In this context, there is significant potential for the use of pharmacodynamic biomarkers to provide pharmacological information, which could be used in a therapeutic drug monitoring setting. This review focuses on discussing some of the challenges faced to date in translating preclinical pharmacodynamic biomarker approaches to a clinical setting. Recent advances in important areas including circulating biomarkers and pharmacokinetic/pharmacodynamic modeling approaches are discussed, and selected examples of anticancer drugs where there is existing evidence to potentially advance pharmacodynamic therapeutic drug monitoring approaches to deliver more effective treatment are discussed. Although we may not yet be in a position to systematically implement therapeutic drug monitoring approaches based on pharmacodynamic information in a cancer patient setting, such approaches are likely to become more commonplace in the coming years. Based on ever-increasing levels of pharmacodynamic information being generated on newer anticancer drugs, facilitated by increasingly advanced and accessible experimental approaches available to researchers to collect these data, we can now look forward optimistically to significant advances being made in this area

    Role of UDP-Glucuronosyltransferase Isoforms in 13-cis Retinoic Acid Metabolism in Humans

    Get PDF
    ABSTRACT: 13-cis Retinoic acid (13cisRA, isotretinoin) is an important drug in both dermatology, and the treatment of high-risk neuroblastoma. 13cisRA is known to undergo cytochrome P450-mediated oxidation, mainly by CYP2C8, but phase II metabolic pathways have not been characterized. In the present study, the glucuronidation activities of human liver (HLM) and intestinal microsomes (HIM), as well as a panel of human UDP-glucuronosyltransferases (UGTs) toward both 13cisRA and the 4-oxo metabolite, 4-oxo 13cisRA, were compared using high-performance liquid chromatography. Both HLM and, to a greater extent, HIM catalyzed the glucuronidation of 13cisRA and 4-oxo 13cisRA. Based on the structures of 13cisRA and 4-oxo 13cisRA, the glucuronides formed are conjugated at the terminal carboxylic acid. Further analysis revealed that UGT1A1, UGT1A3, UGT1A7, UGT1A8, and UGT1A9 were the major isoforms responsible for the glucuronidation of both substrates. For 13cisRA, a pronounced substrate inhibition was observed with individual UGTs and with HIM. UGT1A3 exhibited the highest rate of activity toward both substrates, and a high rate of activity toward 13cisRA glucuronidation was also observed with UGT1A7. However, for both substrates, K m values were above concentrations reported in clinical studies. Therefore, UGT1A9 is likely to be the most important enzyme in the glucuronidation of both substrates as this enzyme had the lowest K m and is expressed in both the intestine and at high levels in the liver

    Clinical utility of vinblastine therapeutic drug monitoring for the treatment of infantile myofibroma patients:A case series

    Get PDF
    Infantile myofibroma is a rare, benign tumour of infancy typically managed surgically. In a minority of cases, more aggressive disease is seen and chemotherapy with vinblastine and methotrexate may be used, although evidence for this is limited. Chemotherapy dosing in infants is challenging, and vinblastine disposition in infants is unknown. We describe the use of vinblastine therapeutic drug monitoring in four cases of infantile myofibroma. Marked inter- and intrapatient variability was observed, highlighting the poorly understood pharmacokinetics of vinblastine in children, the challenges inherent in treating neonates, and the role of adaptive dosing in optimising drug exposure in challenging situations.</p

    A phase I open-label, dose-escalation study of NUC-3373, a targeted thymidylate synthase inhibitor, in patients with advanced cancer (NuTide:301)

    Get PDF
    The study was funded and the investigational drug NUC-3373 was supplied by NuCana plc. The centres that conducted this study are National Institute for Health and Care Research (NIHR) Biomedical Research Centres that also receive institutional funding as Cancer Research UK (CRUK) and Experimental Cancer Medicine Centres (ECMC). The Glasgow Experimental Cancer Medicine Centre (ECMC) is funded by Cancer Research UK and The Chief Scientist’s Office, Scotland (grant award A25174).Purpose 5-fluorouracil (5-FU) is inefficiently converted to the active anti-cancer metabolite, fluorodeoxyuridine-monophosphate (FUDR-MP), is associated with dose-limiting toxicities and challenging administration schedules. NUC-3373 is a phosphoramidate nucleotide analog of fluorodeoxyuridine (FUDR) designed to overcome these limitations and replace fluoropyrimidines such as 5-FU. Patients and methods NUC-3373 was administered as monotherapy to patients with advanced solid tumors refractory to standard therapy via intravenous infusion either on Days 1, 8, 15 and 22 (Part 1) or on Days 1 and 15 (Part 2) of 28-day cycles until disease progression or unacceptable toxicity. Primary objectives were maximum tolerated dose (MTD) and recommended Phase II dose (RP2D) and schedule of NUC-3373. Secondary objectives included pharmacokinetics (PK), and anti-tumor activity. Results Fifty-nine patients received weekly NUC-3373 in 9 cohorts in Part 1 (n = 43) and 3 alternate-weekly dosing cohorts in Part 2 (n = 16). They had received a median of 3 prior lines of treatment (range: 0–11) and 74% were exposed to prior fluoropyrimidines. Four experienced dose-limiting toxicities: two Grade (G) 3 transaminitis; one G2 headache; and one G3 transient hypotension. Commonest treatment-related G3 adverse event of raised transaminases occurred in < 10% of patients. NUC-3373 showed a favorable PK profile, with dose-proportionality and a prolonged half-life compared to 5-FU. A best overall response of stable disease was observed, with prolonged progression-free survival. Conclusion NUC-3373 was well-tolerated in a heavily pre-treated solid tumor patient population, including those who had relapsed on prior 5-FU. The MTD and RP2D was defined as 2500 mg/m2 NUC-3373 weekly. NUC-3373 is currently in combination treatment studies. Trial registration Clinicaltrials.gov registry number NCT02723240. Trial registered on 8th December 2015. https://clinicaltrials.gov/study/NCT02723240.Peer reviewe

    Overall survival in malignant glioma is significantly prolonged by neurosurgical delivery of etoposide and temozolomide from a thermo-responsive biodegradable paste

    Get PDF
    Purpose: High-grade glioma (HGG) treatment is limited by the inability of otherwise potentially efficacious drugs to penetrate the blood brain barrier. We evaluate the unique intra-cavity delivery mode and translational potential of a blend of poly(DL-lactic acid-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) paste combining temozolomide and etoposide to treat surgically resected HGG. Experimental Design: To prolong stability of temozolomide pro-drug, combined in vitro drug release was quantitatively assessed from low pH-based PLGA/PEG using advanced analytical methods. In vitro cytotoxicity was measured against a panel of HGG cell lines and patient-derived cultures using metabolic assays. In vivo safety and efficacy was evaluated using orthotopic 9L gliosarcoma allografts, previously utilized pre-clinically to develop Gliadel®. Results: Combined etoposide and temozolomide in vitro release (22 and 7 days respectively) was achieved from a lactic acid-based PLGA/PEG paste, used to enhance stability of temozolomide prodrug. HGG cells from central-enhanced regions were more sensitive to each compound relative to primary lines derived from the HGG invasive margin. Both drugs retained cytotoxic capability upon release from PLGA/PEG. In vivo studies revealed a significant overall survival benefit in post-surgery 9L orthotopic gliosarcomas treated with intra-cavity delivered PLGA/PEG/temozolomide/etoposide and enhanced with adjuvant radiotherapy. Long-term survivorship was observed in over half the animals with histological confirmation of disease-free brain. Conclusions: The significant survival benefit of intra-cavity chemotherapy demonstrates clinical applicability of PLGA/PEG paste-mediated delivery of temozolomide and etoposide adjuvant to radiotherapy. PLGA/PEG paste offers a future platform for combination delivery of molecular targeted compounds

    Phase II study of intravenous etoposide in patients with relapsed ependymoma (CNS 2001 04)

    Get PDF
    BackgroundRelapsed ependymoma has a dismal prognosis, and the role of chemotherapy at relapse remains unclear. This study prospectively evaluated the efficacy of intensive intravenous (IV) etoposide in patients less than 21 years of age with relapsed intracranial ependymoma (NCT00278252).MethodsThis was a single-arm, open-label, phase II trial using Gehan’s two-stage design. Patients received IV etoposide 100 mg/m2 on days 1-3, 8-10, and 15-17 of each 28-day cycle, up to maximum of 6 cycles. Primary outcome was radiological response after 3 cycles. Pharmacokinetic analysis was performed in 10 patients.ResultsTwenty-five patients were enrolled and included in the intention-to-treat (ITT) analysis. Three patients were excluded in per-protocol (PP) analysis. After 3 cycles of etoposide, 5 patients (ITT 20%/PP 23%) had a complete response (CR), partial response (PR), or objective response (OR). Nine patients (ITT 36%/PP 41%,) had a best overall response of CR, PR, or OR. 1-year PFS was 24% in ITT and 23% in PP populations. 1-year OS was 56% and 59%, 5-year OS was 20% and 18%, respectively, in ITT and PP populations. Toxicity was predominantly hematological, with 20/25 patients experiencing a grade 3 or higher hematological adverse event.ConclusionsThis study confirms the activity of IV etoposide against relapsed ependymoma, however, this is modest, not sustained, and similar to that with oral etoposide, albeit with increased toxicity. These results confirm the dismal prognosis of this disease, provide a rationale to include etoposide within drug combinations, and highlight the need to develop novel treatments for recurrent ependymoma

    Dactinomycin induces complete remission associated with nucleolar stress response in relapsed/refractory NPM1-mutated AML

    Get PDF
    Acute myeloid leukemia (AML) with mutated NPM1 accounts for one-third of newly diagnosed AML. Despite recent advances, treatment of relapsed/refractory NPM1-mutated AML remains challenging, with the majority of patients eventually dying due to disease progression. Moreover, the prognosis is particularly poor in elderly and unfit patients, mainly because they cannot receive intensive treatment. Therefore, alternative treatment strategies are needed. Dactinomycin is a low-cost chemotherapeutic agent, which has been anecdotally reported to induce remission in NPM1-mutated patients, although its mechanism of action remains unclear. Here, we describe the results of a single-center phase 2 pilot study investigating the safety and efficacy of single-agent dactinomycin in relapsed/refractory NPM1-mutated adult AML patients, demonstrating that this drug can induce complete responses and is relatively well tolerated. We also provide evidence that the activity of dactinomycin associates with nucleolar stress both in vitro and in vivo in patients. Finally, we show that low-dose dactinomycin generates more efficient stress response in cells expressing NPM1 mutant compared to wild-type cells, suggesting that NPM1-mutated AML may be more sensitive to nucleolar stress. In conclusion, we establish that dactinomycin is a potential therapeutic alternative in relapsed/refractory NPM1-mutated AML that deserves further investigation in larger clinical studies
    • …
    corecore