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Overall survival in malignant glioma is significantly prolonged by neurosurgical 

delivery of etoposide and temozolomide from a thermo-responsive biodegradable 

paste. 
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Abstract 

 

Purpose 

High-grade glioma (HGG) treatment is limited by the inability of otherwise 

potentially efficacious drugs to penetrate the blood brain barrier. We evaluate the 

unique intra-cavity delivery mode and translational potential of a blend of poly(DL-

lactic acid-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) paste 

combining temozolomide and etoposide to treat surgically resected HGG. 

 

Experimental Design 

To prolong stability of temozolomide pro-drug, combined in vitro drug release was 

quantitatively assessed from low pH-based PLGA/PEG using advanced analytical 

methods. In vitro cytotoxicity was measured against a panel of HGG cell lines and 

patient-derived cultures using metabolic assays. In vivo safety and efficacy was 

evaluated using orthotopic 9L gliosarcoma allografts, previously utilized pre-

clinically to develop Gliadel
®

. 

 

Results 

Combined etoposide and temozolomide in vitro release (22 and 7 days respectively) 

was achieved from a lactic acid-based PLGA/PEG paste, used to enhance stability of 

temozolomide prodrug. HGG cells from central-enhanced regions were more 

sensitive to each compound relative to primary lines derived from the HGG invasive 

margin. Both drugs retained cytotoxic capability upon release from PLGA/PEG. In 

vivo studies revealed a significant overall survival benefit in post-surgery 9L 
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orthotopic gliosarcomas, treated with intra-cavity delivered 

PLGA/PEG/temozolomide/etoposide and enhanced with adjuvant radiotherapy. Long-

term survivorship was observed in over half the animals with histological 

confirmation of disease-free brain.  

 

Conclusions 

The significant survival benefit of intra-cavity chemotherapy demonstrates clinical 

applicability of PLGA/PEG paste-mediated delivery of temozolomide and etoposide 

adjuvant to radiotherapy. PLGA/PEG paste offers a future platform for combination 

delivery of molecular targeted compounds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Research. 
on May 24, 2019. © 2019 American Association for Cancerclincancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on May 21, 2019; DOI: 10.1158/1078-0432.CCR-18-3850 

http://clincancerres.aacrjournals.org/


5 
 

 

 

Translational Relevance 

 

The clinical benefit of intra-cavity chemotherapy delivery after neurosurgical 

resection in glioblastoma has previously been demonstrated in phase III trials of 

Gliadel
®

. However, survival benefits are modest, in part due to the inability of pre-

formed Gliadel
®

 wafers to be applied at close proximity to the irregular infiltrative 

tumor margin and due to Gliadel
®

 (and most pre-clinical drug delivery systems) only 

being able to deliver single agents to a highly heterogeneous disease. Furthermore, 

local release formulations of standard-of-care temozolomide have been hampered by 

compound instability and systemic delivery of etoposide has shown limited efficacy. 

 

We have developed a self-assembling polymer microparticle paste which can be 

molded onto neurosurgical cavity lining, wherein temozolomide half-life is 

prolonged.  Etoposide in combination with temozolomide (+/- adjuvant radiotherapy), 

shows a significant survival benefit in vivo with long-term disease-free survivors, 

relative to standard-of-care. A combined temozolomide/etoposide-releasing polymer 

paste may translate clinically as a second-generation intra-cavity drug delivery system 

for high-grade resectable glioma. 
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Introduction 

 

WHO (World Health Organisation) IV high-grade gliomas (HGG) represent the most 

aggressive and genetically heterogeneous group of primary brain tumors. The most 

common sub-type is grade IV glioblastoma multiforme (GBM) with an age 

standardised global incidence of 4.6/100,000/year (1). The median survival for 

patients diagnosed with GBM remains dismal at 14.6 months and has not improved in 

recent years (2,3), despite advances in neuroimaging, surgery, radiotherapy and 

chemotherapy (4). The slight improvement in terms of patient survival for high-grade 

gliomas, does not match the general trend in cancer survival over the past two decades 

(5). Techniques such as the use of 5-aminolevulinic (5ALA)-based fluorescence-

guided neurosurgery (Gliolan
TM

) have improved rates of gross total resection and 

increased progression-free survival (6,7), but infiltrative disease remains within 

adjacent brain parenchyma and is responsible for tumour re-growth.  

 

The efficacy of systemic chemotherapy is limited for many reasons, but one important 

limiting factor is the blood brain barrier (BBB), which typically restricts therapeutic 

concentrations from being delivered within the microenvironment of residual post-

surgical neoplastic cells. Systemic toxicities are dose limiting with sub-therapeutic 

doses favouring acquisition of secondary resistance by GBM cells (8,9).  

 

Temozolomide (TMZ) is the primary systemic chemotherapy agent used in the 

treatment of GBM at a dose of 150-200 mg/m
2
, but penetration beyond the BBB 
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remains a limiting factor for efficacy (10,11). Higher doses of TMZ are proscribed 

due to dose-limiting bone marrow suppression with severe leukopenia and 

thrombocytopenia; however only minimal adverse neurological affects have been 

observed. Coupled to no requirement for hepatic drug activation, this collectively 

supports consideration of TMZ as an ideal candidate for direct local delivery to the 

brain (12).  

 

Many potential strategies are being investigated to enhance drug penetration to the 

tumour microenvironment (13). Intra-cavity depot drug delivery systems represent 

one such strategy, which can be implanted at the time of maximal neurosurgical 

resection to deliver agents directly to the brain tissue. This method allows for 

potential delivery of high local drug doses to the residual infiltrative cells with 

minimised systemic exposure. This localised drug release approach is currently used 

in the Food and Drug Administration (FDA)- and National Institute for Health and 

Care Excellence (NICE)-approved treatment of GBM with Gliadel
®

 wafers containing 

3.85% carmustine (BCNU), demonstrated to have a modest, but significant positive 

effect on patient overall survival in randomised phase III trials (14,15). It is important 

to note that Gliadel
®

 serves as the rationale that intra-cavity drug delivery, with a 

strategy reliant on diffusion and mass transport mechanisms away from the surgical 

cavity, is both viable and successful, representing one of only a very few therapies 

clinically-approved for GBM. Multiple phase III trials of targeted agents based on 

biological data have yet to show any overall survival benefit (16,17).  

 

We have previously reported the clinical utility of a novel intra-cavity drug delivery 

self-assembling system, applied intra-operatively as a polymer micro-particulate paste 
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that molds to the neurosurgical resection cavity and sinters at body temperature (18). 

The glass transition temperature of the biodegradable polymer micro-particles made 

from poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) has 

been tuned to allow the particles to fuse, such that at 37°C the polymer paste solidifies 

(19). Application of a chemotherapeutic paste represents a novel mode of intra-cavity 

delivery, distinct from existing approaches, permitting close apposition to the 

irregular-shaped resection cavity lining and potentially minimizing effective drug 

diffusion distance into the invasive tumor margin and brain parenchyma beyond. 

Whilst thermo-sensitive solutions which form a gel upon interstitial delivery have 

been previously reported by us in pre-clinical studies, these do not offer comparable 

close contact to the surgical cavity lining and have yet to demonstrate combination 

drug release (20,21)   

 

In vivo proof-of-concept was initially demonstrated by the incorporation of etoposide 

(ETOP) into PLGA/PEG paste and efficacious delivery to a subcutaneous GBM 

xenograft (22).  As combination therapy clinical trials with systemically-delivered 

ETOP, a topoisomerase II inhibitor, have shown poor response rates attributed to poor 

BBB penetration and dose-limiting toxicities (23,24), intra-cavity delivery of ETOP 

warrants investigation. 

 

As an increasing appreciation of the degree of intra-tumor molecular heterogeneity 

and sub-clonal divergence warrants considerations for multi-agent drug delivery, we 

now present a revised PLGA/PEG formulation incorporating TMZ and ETOP for 

simultaneous combination drug release. TMZ is delivered as a prodrug that is stable at 

low pH, but at higher pH spontaneously hydrolyses. The active hydrolysis product 
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MTIC [3-methyl-(triazen-1-yl)imidazole-4-carboxamide] rapidly breaks down to the 

reactive methyldiazonium ion (diazomethane) that alkylates DNA. (25). The 

spontaneous nature of TMZ metabolism allows some bioavailability in the tumor via 

oral administration as there is no requirement for first pass metabolism (26). 

However, plasma half-life of TMZ is low (1.24h) (27) and therefore intra-cavity 

administration has the potential to increase exposure of tumor cells to the active drug. 

Previous studies examining local release of TMZ have typically measured TMZ 

prodrug release within a neutral pH saline/water environment over a period of several 

days, thus failing to directly address TMZ instability (12,28). ETOP has been shown 

by our group and several others to be efficacious against high-grade glioma when 

delivered locally and/or in a targeted manner (22,29–32). 

 

Here, we report a PLGA/PEG formulation tailored to incorporate active TMZ within a 

low pH environment and demonstrate precise in vitro quantitative release of TMZ in 

combination with ETOP over several weeks. Furthermore, we demonstrate tolerability 

and significantly prolonged overall survival, compared to standard-of-care treatment, 

in an aggressive, immunocompetent orthotopic glioma allograft model, previously 

utilized pre-clinically to develop Gliadel
®

. Our data highlights a potential therapeutic 

role in the treatment of high-grade glioma, for intra-cavity delivery of TMZ/ETOP 

combination therapy via PLGA/PEG paste. Furthermore, our platform technology is 

applicable for the consideration of rational combinations of next-generation targeted 

therapeutics. 

 

Materials and Methods 
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PLGA/PEG microparticle matrix formulation 

 

Thermosensitive particles were fabricated from blends of 53kDa PDL LGA (85:15 

DLG 4CA) (Evonik Industries) and PEG 400 (Sigma Aldrich, UK) as previously 

described (18). Briefly, a mixture of 93.5%:6.5% PLGA/PEG (w/v) was blended at 

80-90°C on a hotplate, mixed and allowed to cool. Cooled polymer was then ground 

into particles and sieved to obtain the 100-200µm particle size fraction. 

 

Matrix preparation for in vitro release  

 

200mg of PLGA/PEG microparticles were mixed with 0.05% L-Lactic acid solution 

(Sigma-Aldrich, UK) containing 1.5mg of either TMZ or a combination of TMZ with 

ETOP (both Sigma-Aldrich, UK), at 1.5mg of each drug. The amount of solution was 

in the ratio of 1.0:0.8 (polymer:carrier solution), where 160µl of L-Lactic acid 

solution was used as a low pH (~3) carrier to increase half-life of the TMZ pro-drug 

and to form the microparticle paste at room temperature. L-Lactic acid as a carrier 

ensures greater stability of the TMZ pro-drug within PLGA/PEG; upon release from 

the polymer, TMZ converts by hydrolysis to MTIC (intermediate compound) and its 

active component, AIC, which is highly unstable at neutral pH. The paste was then 

applied into 3 cylindrical PTFE molds (4mm x 6mm) and incubated for 2 hours at 

37C in a humidified incubator. The resulting matrices contained 500µg for single 

TMZ and 1000µg for dual release studies (i.e. 500µg for each drug). 

 

PLGA microsphere formulation 
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An emulsion of PLGA containing active ETOP was prepared and stabilized in an 

aqueous hardening bath. 50-100µm diameter. PLGA microspheres were harvested 

and mixed with PLGA/PEG thermosensitive microparticles and saline to form a 

microparticulate paste at room temperature, which sintered at 37°C to form a 

solidified matrix.  

 

In vitro single and combination drug release  

 

Triplicate scaffolds loaded with TMZ or TMZ and ETOP, were placed in 1mL of 

distilled water and incubated at 37C. At given time intervals, water was removed, 

retained and replaced with 1ml fresh distilled water. The retained fraction was 

assayed using liquid chromatography-mass spectrometry (LC-MS) for combined 

TMZ/ETOP release (Applied Biosystems, California, USA). Non-drug loaded 

matrices containing 0.05% L-Lactic acid solution were used to test background 

absorbance. 

 

Liquid chromatography-mass spectrometry (LC-MS) analysis of TMZ 

 

Chromatographic TMZ separation was achieved using a Kinetex C18 50mm x 4.6mm 

2.6 µm and a SecurityGuard cartridge C18 3 mm guard column (Phenomenex, 

California, USA) maintained at 30°C. Analytes were eluted with HPLC grade 

(Sigma-Aldrich, UK) mobile phases comprising 0.1% aqueous formic acid and 0.1% 

formic acid in acetonitrile, with a flow rate was 0.5mL/min. An API4000 triple 

quadrupole LC–MS/MS (Applied Biosystems) was used for analysis with 

electrospray ionization performed in positive ion mode with the following source 
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settings: curtain gas, 20; ion source gas 1, 50; ion source gas 2, 40; ion spray voltage, 

5500; collision gas, 6; entrance potential, 10; ionization temperature, 500°C. 

Detection of TMZ was achieved using the transition m/z 195.088->138.0 in positive 

electrospray MRM mode. A standard curve over the range 0.44–500ng/ml TMZ in 

matched matrix was prepared fresh on each day of analysis. 

 

LC-MS analysis of ETOP 

 

Chromatographic separation of ETOP was achieved using a Perkin Elmer 200 Series 

HPLC with a Genesis C18 120Å 4 µ, 100mm (Kinesis Ltd, UK) and a SecurityGuard 

cartridge C18 3mm guard column (Phenomenex, California, USA) maintained at 

30°C. Analytes were eluted with HPLC grade (Sigma-Aldrich, UK) mobile phases 

50:50 (w/w) Acetonitrile:0.1% Ammonium Acetate pH (4.7) under isocratic flow of 

0.3 ml/min. A 3200 QTrap  LC–MS/MS (Applied Biosystems) was used for analysis 

with electrospray ionization performed in positive ion mode with the following source 

settings: curtain gas, 20; ion source gas 1, 70; ion source gas 2, 80; ion spray voltage, 

5500; collision gas, 2; entrance potential, 10; ionization temperature, 500°C. 

Detection of ETOP was achieved using the transition m/z 674.332->229.1 in positive 

electrospray MRM mode. For sample analyses, a standard curve over the range 1.56–

50 µg/ml ETOP was prepared in matched matrix.  

 

In vitro cytotoxicity  

 

U-373MG (GBM) and 9L (rat gliosarcoma grade IV) cell lines were cultured in 1g/L 

glucose Dulbecco’s Modified Eagle Medium (DMEM) (Sigma-Aldrich), 
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supplemented with 10% fetal bovine serum (FBS) (GE Healthcare) and 1% L-

glutamine (Sigma-Aldrich). GIN27, GIN28 and GIN31 are Glioma INvasive margin 

GBM cell lines derived from the infiltrative margin of adult patients undergoing 5-

aminolevulinic acid fluorescence-guided neurosurgical resection at the Queen’s 

Medical Centre, University of Nottingham (Supplementary Table 1). GIN lines were 

derived from right temporal, right frontal and right temporal anatomical regions 

respectively and cultured in 1g/L glucose DMEM supplemented with 15% FBS and 

1% L-glutamine. Cell line authentication of the U-373MG established line and GIN-

27, GIN-28, GIN-31 patient-derived primary lines were determined by PCR-single-

locus-technology, utilizing 21 independent PCR-systems (Eurofins, Germany) 

(Supplementary Figure 1). To assess acute cytotoxicity to TMZ and ETOP in vitro, all 

6 cells lines were seeded onto 96-well plates at a density of 2-8 x10
3
 cells/well, due to 

variability in cell size for each line. After 24 hours, cells were exposed to either serial 

dilutions of TMZ (concentration range 0 –2000µM) in triplicate wells, or ETOP 

(concentration range 0–200µM). Untreated and dimethyl sulfoxide (DMSO) (Sigma-

Aldrich) carrier-only wells served as controls for metabolic viability. To mitigate 

against the short half-life of TMZ, fresh compound was added after 24 and 48 hours. 

Upon 72 hours acute exposure to either compound, PrestoBlue (Thermo Fisher) assay 

was conducted according to manufacturer instructions and fluorescence read using a 

FLUOstar Omega Microplate Reader (BMG Labtech.) (excitation 544nm; emission 

590nm). Percentage metabolic viability was determined for each drug dose, relative to 

untreated cells and normalized for DMSO, with standard error of the mean calculated. 

To determine whether exposure of TMZ or ETOP to PLGA/PEG matrices impairs 

cytotoxic function, we designed an assay where glioma cells were directly exposed to 

drugs released from polymer. The 9L cell line was chosen for this analysis to compare 
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with 9L in vivo orthotopic data presented in this study.  1.25 x 10
4
 9L cells/well were 

seeded onto a 12-well plate one day prior to PLGA/PEG-mediated drug release. 

PLGA/PEG matrices loaded with 500µg TMZ, ETOP or combined TMZ/ETOP 

(500µg per drug), were placed in NetWell inserts (Corning; 15mm) suspended over 

9L cells, 24 hours post-seeding within 12-well plates. Cells were exposed to 48 hours 

drug release from PLGA/PEG and PrestoBlue assay used to determine metabolic 

viability. Combination indices (CI) to assess synergy for ETOP/TMZ exposure to 9L 

cells was determined using CompuSyn v1.0, based on the Chou-Talalay method (33). 

 

Animals 

 

Female F344 immunocompetent rats weighing 160-200 grams were purchased from 

Harlan Bioproducts and maintained in Individually Ventilated Cages (Harlan 

Bioproducts) within a barriered unit, illuminated by fluorescent lights set to give a 12-

hour light-dark cycle (on 07.00, off 19.00), as recommended in the U.S. Public Health 

Service Policy on Humane Care and Use of Laboratory Animals (see Supplementary 

Methods for detailed animal welfare procedures).  All animals were treated in 

accordance with the policies and guidelines of the Johns Hopkins University Animal 

Care and Use Committee.  

 

In vivo safety and determination of PLGA/PEG/TMZ/ETOP maximum tolerated 

dose (MTD) 

 

A dose-escalation study was performed for locally delivered combinations of TMZ 

and ETOP to establish the MTD and toxicity. 9L gliosarcoma was maintained as a 
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subcutaneous mass and passaged every 3-4 weeks in the flanks of rats. After humane 

killing with an IP overdose of sodium pentobarbital (200mg/kg) (Butler Animal 

Health Supply), the tumor was surgically excised from the carrier animal and sliced 

into 2mm
3
 allografts. For intracranial implantation, rats were anesthetized with an 

intraperitoneal injection of 3mL/kg of a stock solution containing ketamine 

hydrochloride, 75mg/mL (Ketathesia, Butler Animal Health Supply), 7.5 mg/mL 

xylazine (Lloyd Laboratories) and 14.25% ethyl alcohol in 0.9% NaCl. All surgical 

procedures were performed using standard aseptic techniques, with sterile gloves, 

instruments and drapes used throughout the procedure. Animals were anaesthetized as 

above and the surgical area was shaved and prepped with ethanol and prepodyne.  A 

midline scalp incision was made and a 3mm burr-hole was placed in the left parietal 

bone with its center 3mm lateral and 5mm posterior to bregma. A small incision was 

made through the dura and cortex and a small region of cortex resected. A 2mm
3
 

allograft was placed in the resection cavity either 5 days prior to surgery and polymer 

implant (Batch 1) or concurrently (Batch 2). The wound was closed with sterile 

autoclips. For day 5 polymer implantation, the animal was anaesthetized as above. 

The previous incision was re-opened and a biopsy punch and fine suction tip used to 

resect the tumor back to the tumor-tissue interface, thereby mimicking the surgical 

technique utilized in human patients undergoing comparable GBM surgery. Animals 

were randomized into one of the following groups: Group 1 – Sham surgery (n = 2); 

Group 2 – Surgery/50mg PLGA/PEG (n = 6); Group 3 – Surgery/50mg PLGA/PEG 

containing 20% polymer weight %/drug weight % (w/w) TMZ (10mg) and 50% w/w 

ETOP (25mg) ( n = 4); Group 4 – Surgery/50mg PLGA/PEG containing 10% w/w 

TMZ (5mg) and 25% w/w ETOP (12.5mg) ( n = 4). Polymer microparticles and drugs 

were mixed at room temperature with PBS containing 0.05% L-Lactic acid to give a 

Research. 
on May 24, 2019. © 2019 American Association for Cancerclincancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on May 21, 2019; DOI: 10.1158/1078-0432.CCR-18-3850 

http://clincancerres.aacrjournals.org/


16 
 

mass:volume ratio of 1.0:0.8 for each formulation. Animals were evaluated post-

operatively daily for 50 days and monitored for signs of toxicity, including weight 

loss, failure to thrive and neurological deficits (see Supplementary Methods for 

detailed animal welfare procedures).  

 

In vivo efficacy of locally delivered PLGA/PEG/TMZ/ETOP 

 

The MTD of 20% w/w TMZ and 50% w/w ETOP was chosen for all efficacy arms 

and 9L allografts were implanted 5 days prior to surgery and polymer implant. To 

ensure comparisons against clinical standard-of-care, per orem TMZ was given to 

animals at 50 mg/kg/day for 5 days (days 5-9) and radiotherapy (XRT) administered 

as an external beam single dose of 10Gy immediately after surgery. Rats were 

randomized into one of the following groups with n=7 per group: Group 1 – 

Untreated; Group 2 – Surgery/per orem TMZ/XRT (standard-of-care); Group 3 – 

Surgery/per orem TMZ; Group 4 – Surgery/XRT; Group 5 – Surgery/50mg 

PLGA/PEG; Group 6 – Surgery/50mg PLGA/PEG containing 20% w/w TMZ and 

50% w/w ETOP; Group 7 – Surgery/50mg PLGA/PEG containing 20% w/w TMZ; 

Group 8 – Surgery/50 mg PLGA/PEG containing 50% w/w ETOP; Group 9 – 

Surgery/50mg PLGA/PEG containing 20% w/w TMZ and 50% w/w ETOP/XRT. 

Animals were evaluated post-operatively every day for up to 120 days and monitored 

for signs of adverse toxicity. Survival was assessed, animals euthanized and brains 

excised and stored in formalin after perfusion for histological analyses.  

 

Histology and immunohistochemistry 

 

Research. 
on May 24, 2019. © 2019 American Association for Cancerclincancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on May 21, 2019; DOI: 10.1158/1078-0432.CCR-18-3850 

http://clincancerres.aacrjournals.org/


17 
 

Rat brains were fixed in 4% paraformaldehyde and 5µm sections obtained in a series 

proximal to the surgical resection boundary. Briefly, the slides were incubated at 

37°C overnight, deparaffinized in xylene and hydrated through decreasing 

concentrations of ethanol. For Ki67 and CD31, antigen retrieval was performed in a 

pressure cooker for 7 minutes at full pressure in either sodium citrate buffer (pH 6.0) 

or TE buffer (pH 9.0). Sections were incubated with normal goat serum, followed by 

an endogenous peroxidase block (Dako, UK). Anti-Ki67 rabbit monoclonal antibody 

(Abcam, clone SP6, ab16667) and anti-CD31 rabbit polyclonal antibody (Abcam, 

ab28364) were incubated for 3 hours at room temperature (1:50). Target antigen was 

detected using the Dako Chemate Envision Detection Kit with diaminobenzidine 

chromogen for visualization, according to manufacturer instructions. Sections were 

counter stained with Harris hematoxylin (Surgipath, UK), dehydrated and mounted 

for microscopic analyses. For negative controls, primary antibody was replaced with 

antibody diluent.  

 

Statistical analyses  

 

In vitro cytotoxicity results are reported as the inhibitory concentration 50% (IC50) 

values for each cell line given as the mean and standard error of the mean for three 

independent experiments, plotted relative to the % viability of vehicle-normalized 

untreated cells. Overall survival (OS) analyses were performed using SPSS v.14 

(SPSS Inc.). OS was calculated from the time of surgery/polymer implant to the death 

from any cause. Kaplan-Meier survival curves with significance levels determined by 

the log-rank test were constructed by univariate analyses. p – values < 0.05 were 

deemed statistically significant. For in vivo efficacy, the Wilcoxon-Mann-Whitney 
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test was used to determine a sample size of n=7 per treatment arm, based on 80% 

power (5% significance; two-sided difference of means), where a standardized effect 

size (signal/noise ratio of 1.6) was estimated from tolerability studies comparing each 

individual treatment arm versus surgery only control.  

 

 

Results 

 

In vitro TMZ and combined ETOP/TMZ release from an acidic pH-based 

PLGA/PEG paste 

 

The instability of TMZ (half-life 1.24h) presents difficulties when considering 

localized drug delivery at a single time-point. At neutral pH, the TMZ pro-drug 

spontaneously converts to the active hydrolysis product, MTIC. A low pH of ~3 is 

crucial in providing an environment in which TMZ is sufficiently stable to be 

incorporated within biomaterial formulations without rapidly degrading. PLGA/PEG 

microparticles mixed with 500µg TMZ and 0.05% organic (lactic) acid-based saline 

carrier (1.0:0.8 polymer:carrier), retained the ability to sinter at 37°C to form matrices 

(Figure 1A). In vitro release from matrices into saline, revealed that 70% of TMZ pro-

drug was released on Day 1, 90% cumulatively after Day 2, continuing to complete 

drug release on Day 7, as determined by UV-Vis spectrophotometry and conservation 

of the TMZ molecular ion at 195.14 m/z further validated by LC-MS on Days 1 and 7 

(Figure 1 B-D). This is consistent with TMZ release from biomaterial formulations 

previously reported by us (12,34). To confirm that PLGA/PEG matrices prepared with 

low pH carrier are capable of releasing drugs in combination with TMZ, matrices 
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were loaded with both TMZ and ETOP, released into saline and quantified using LC-

MS. TMZ pro-drug burst release of 70% on Day 1 and complete release by Day 7 was 

observed, comparable to TMZ single release matrices. ETOP release showed a 60% 

Day 1 burst-release, followed by 80% cumulative drug release on Day 2 and a steady 

and gradual state release until total drug was released by Day 22 (Figure 1E), 

consistent with our previously reported ETOP release from PLGA/PEG with pH7 

saline carrier (18). Whilst we have shown biomaterial flexibility of PLGA/PEG paste 

by encapsulating ETOP within PLGA microspheres which are mixed with the 

PLGA/PEG microparticles, thus overcoming burst release and permitting more 

controlled and sustained drug release (Supplementary Figure 2), we have taken 

forward the formulations with relatively higher burst release for in vivo therapy 

studies, to mitigate the aggressive nature of the 9L allograft.  

 

 Variable sensitivity of human and rodent high-grade glioma cells exposed to 

TMZ and ETOP in vitro 

 

To assess the rationale for TMZ and ETOP localized delivery from PLGA/PEG paste, 

a panel of human GBM cell lines (representative of intra-tumor heterogeneity) was 

exposed to acute doses of either drug over 3 days. To validate the choice of the in vivo 

orthotopic model (9L grade IV gliosarcoma rat allografts) utilized in this study, the 

9L cell line was exposed to a similar dosing regimen but which included TMZ and 

ETOP in combination.  

 

U-373MG cells derived from the central-enhanced GBM core region, was acutely 

sensitive to ETOP with an IC50 concentrations of 0.4µM. Although a dose-dependent 
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decrease in metabolic viability was observed for all three GBM lines derived from the 

infiltrative margin, ETOP IC50 concentrations were not reached (Figure 2A). No IC50 

concentrations were achieved for TMZ under any drug dose tested, although minimal 

but significant impaired metabolic viability was observed at 500µM TMZ after 72 

hours for all cell lines (metabolic viability reduced by 10-20%) (Figure 2B). 9L 

gliosarcoma cells were sensitive to both drugs but markedly more sensitive to ETOP 

(IC50 <3.12µM relative to IC50 500µM for TMZ). To determine combined effects of 

9L exposure to ETOP and TMZ, the IC50 dose of TMZ (500µM) was added to 

individual wells containing an ETOP dose range of 0.39-100µM. Acute impairment 

of metabolic viability was observed over 72 hours in a similar manner to ETOP alone 

exposure, with an IC50 concentration of <3.12µM (39.4% viability +/- 0.9). (Figure 

2C-E). According to the Chou-Talalay method to assess synergy, a combined dose of 

500µM TMZ/6.25µM ETOP was ‘nearly additive’, with no evidence of synergy or 

additivity for any other dose combination (Supplementary Table 2). To confirm that 

incorporation of TMZ or ETOP into PLGA/PEG matrices does not impair cytotoxic 

capability, 9L cells exposed to TMZ, ETOP or combined TMZ/ETOP released from 

PLGA/PEG were assessed for metabolic viability relative to cells exposed to 

PLGA/PEG containing no drug. Drug doses (TMZ – 1mM; ETOP – 8.5µM) greater 

than the previously determined IC50 concentrations were chosen to ensure sufficient 

drug concentrations were achieved after 24 hours burst release. Released TMZ, ETOP 

and combined TMZ/ETOP resulted in 88.5% +/- 3.2, 50.0% +/- 1.0 and 45% +/- 2.2 

metabolic viability respectively, confirming these agents retain cytotoxic capabilities 

when released from PLGA/PEG formulated with 0.05% lactic acid (Figure 2F).  

 

In vivo tolerability of PLGA/PEG/TMZ/ETOP in orthotopic gliomas 
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To determine safety of intra-cavity delivery, PLGA/PEG/TMZ/ETOP paste was 

molded to the tumor cavity lining of rat brains immediately after surgical resection of 

9L allograft gliomas (Figure 3A-B), which were either implanted 5 days prior to, or 

concurrently with polymer paste. Previous PLGA/PEG/TMZ/ETOP dosing to 

determine MTD in human GBM subcutaneous mouse xenografts, showed that 50mg 

PLGA/PEG containing either 15% w/w TMZ / 50% w/w ETOP or 20% w/w TMZ / 

50% w/w ETOP, was well tolerated over 102 and 76 days respectively. A dose of 

30% w/w TMZ / 50% w/w ETOP resulted in rapid loss of weight by day 60, 

indicating toxicity (data not shown). Based upon this MTD, two drug doses were 

assessed for orthotopic safety studies: (i) 50mg PLGA/PEG containing 10% w/w 

TMZ / 25% w/w ETOP; (ii) 50mg PLGA/PEG containing 20% w/w TMZ / 50% w/w 

ETOP. MTD was not reached as both doses were well tolerated over 2-3 weeks, with 

no difference in weight gain and other animal welfare measures observed relative to 

control animals treated with PLGA/PEG loaded with saline or animals undergoing 

surgery alone. Most of the control animals were sacrificed on Day 14 due to tumor-

related adverse neurological deficits, whereas no neurological deficit was observed in 

PLGA/PEG/TMZ/ETOP animals (Figure 3C-D).  

 

In vivo efficacy of intra-cavity delivered PLGA/PEG/TMZ/ETOP in orthotopic 

glioma allografts 

 

At the termination of in vivo tolerability studies at Day 50 post surgery and polymer 

implant, both PLGA/PEG containing 10% w/w TMZ / 25% w/w ETOP or 20% w/w 

TMZ / 50% w/w ETOP, resulted in a significant survival benefit over sham surgery 
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and per orem TMZ controls (P < 0.001 and P < 0.004 when PLGA/PEG delivered 5-

days post tumor implant or concurrently respectively). Only animals within 

PLGA/PEG treatment groups were still alive at Day 50 and treatment efficacy was 

confirmed histologically and via immunohistochemistry on post-sacrificial brain 

tissue (Supplementary Figures 3A-D and 4). As this was evident whether 9L 

allografts were implanted 5 days prior to surgery or on the day of surgery, the former 

tumor implantation time-point was selected for a therapy study as this more closely 

mimics the clinical scenario. Evidence of both extensive infiltration in the adjacent 

brain parenchyma close to the primary tumour site and individual infiltrative cells in 

the contra-lateral hemisphere, in animals receiving sham surgery, confirm the 

aggressive invasive nature of the 9L allograft (Supplementary Figure 3E-H).  

 

To ensure statistical significance within a clinically-relevant powered therapy study, 

n=7 animals were used per treatment arm, adjuvant XRT was included and Day 120 

post-treatment was regarded as a measure of long-term survivors (LTS) as previously 

reported by us (12,35). Intra-cavity delivery of PLGA/PEG/TMZ/ETOP consistently 

improved the survival of tumor-bearing animals compared to control arms. Untreated 

animals, animals that received surgery/blank polymer and animals that received 

surgery/per orem TMZ (Figure 4A and Table 1), had a median survival of 13.0, 12.0 

and 19.0 days respectively. Animals that received surgery, per orem TMZ and XRT 

(Stupp protocol) had a relatively increased median survival of 26.0 days (P < 0.0001 

vs. controls, surgery/blank polymer (Figure 4A) and surgery/XRT (Table 1). No 

significant difference was observed between the Stupp protocol and animals that 

received surgery/per orem TMZ (S/poT, n=7) (P = 0.336) (Figure 4A and Table 1). 

Animals that received either surgery/PLGA/PEG/TMZ/ETOP or 
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surgery/PLGA/PEG/ETOP, had an increased median survival of 33.0 and 71.0 days 

respectively compared to surgery/PLGA/PEG/TMZ (P < 0.0001 vs. controls; P < 

0.0001 vs. surgery/PLGA/PEG/TMZ), with 28.6% LTS in each group (Figure 4B and 

Table 1). Animals that received surgery/PLGA/PEG/TMZ/ETOP with adjuvant XRT 

had an increased mean survival of 76.8 days relative to animals that received 

surgery/PLGA/PEG/TMZ/ETOP (P < 0.0001). Due to 4/7 LTS in the 

surgery/PLGA/PEG/TMZ/ETOP with adjuvant XRT group, median survival could 

not be determined (Figure 4C). A comparison of survival among all groups revealed 

animals receiving surgery/PLGA/PEG/TMZ/ETOP with adjuvant XRT had the 

greatest overall survival benefit, with 57.1% of animals deemed LTS, relative to 

28.6% LTS for surgery/PLGA/PEG/TMZ/ETOP, 28.6% LTS for 

surgery/PLGA/PEG/ETOP and 14.3% LTS in animals treated with surgery and XRT 

(Table 1). 

 

Histological and immunohistochemical confirmation of in vivo efficacy 

 

To confirm that the observed survival benefit in PLGA/PEG treatment groups was 

directly due to efficacious intra-cavity delivery of TMZ/ETOP, histological and 

immunohistochemical analyses at the surgical margins and adjacent parenchyma were 

conducted on post-sacrificial brains. Untreated animals (Day 13), animals treated with 

surgery/per orem TMZ (Day 13), surgery/per orem TMZ/XRT (Day 22), 

surgery/XRT (Day 26) or surgery/blank PLGA-PEG (Day 14), all showed extensive 

tumor recurrence and dense cellularity within and surrounding the surgical resection 

cavity, with tumor cells visibly infiltrating brain parenchyma (Figure 5A-E). This 

finding is consistent with immunohistochemical staining for the proliferation marker 
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Ki67, where untreated animals (Day 13), animals treated with surgery/per orem TMZ 

(Day 13), surgery/per orem TMZ/XRT (Day 36), surgery/XRT (Day 26) or 

surgery/blank PLGA-PEG (Day 12), revealed high numbers of proliferative cells 

which have infiltrated into the surgical resection cavity and brain parenchyma (Figure 

5I-M). In contrast, animals treated with surgery/PLGA-PEG-TMZ-ETOP (Day 120), 

surgery/PLGA-PEG-ETOP (Day 120) and surgery/PLGA-PEG-TMZ-ETOP/XRT 

(Day 120), show gliotic scarring but no histological/immunohistochemical evidence 

of recurrent proliferative tumor cells, consistent with long-term survivorship (Figure 

5F-H; 5O-P). To further visualize treatment efficacy, histological staining on whole-

brain cross-sections confirmed extensive 9L tumor regrowth and infiltration beyond 

the resection cavity in untreated and surgery/per orem TMZ animals. In marked 

contrast, LTS animals representative of surgery/PLGA/PEG/TMZ/ETOP and 

surgery/PLGA/PEG/TMZ/ETOP/XRT treatment groups, showed no evidence of 

tumor cells within and beyond the surgical resection cavity, confirming that these 

animals were likely disease-free (Supplementary Figure 5).  

 

 

Discussion 

 

Despite a substantial increase in clinical trials for high-grade glioma in the post-

genomic era, particularly based on tumor subtyping revealed by integrated omics (36–

38),  no phase III efficacy has been reported for any molecular targeted therapy in a 

randomized trial. During this period, only an application of non-invasive, low 

intensity alternating electrical fields (Tumour Treating Fields; TTF) in combination 

with TMZ, has shown a significantly prolonged progression-free and overall survival 
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benefit, with FDA approval of TTF for the treatment of recurrent and newly 

diagnosed GBM (2011 and 2015 respectively) (39). The difficulty of delivering 

therapeutic doses across the BBB remains a substantial impediment to candidate 

molecular therapies. An increasing appreciation of intra-tumor heterogeneity and sub-

clonal divergence, presents a compounding obstacle and highlights an urgent need to 

consider combination therapy in next-generation clinical trials (40–42).  

 

Intra-cavity chemotherapy administered at the time of surgical resection using 

innovative and fit-for-purpose biomaterial formulations, continues to offer a means to 

bypass the BBB and deliver therapeutic concentrations in close proximity to 

infiltrative high-grade glioma. It also avoids the ‘therapeutic void’ between surgical 

resection and the start of adjuvant treatment, particularly radiotherapy, thereby 

preventing early tumor re-growth. It is important to note that the clinical success of 

Gliadel
®

 not only provides a rationale for this delivery mode, but that such significant 

efficacy (albeit modest), has not been reported for any molecular targeted 

monotherapy trialed for GBM. Indeed, there has been a resurgence of efficacious 

intra-cavity delivery of repurposed agents using biomaterials in pre-clinical orthotopic 

brain tumor models (43–46).  

 

In the current study, we have assessed in vivo efficacy of a novel intra-cavity delivery 

mode, whereby a biodegradable formulation of PLGA/PEG loaded with a 

combination of TMZ/ETOP is administered as a paste which molds to the irregular 

contours of a tumor resection cavity, sintering in situ and maintaining close 

conformity to the cavity lining. Our data reveals a significant overall survival benefit 

in surgery/PLGA/PEG/TMZ/ETOP treated 9L orthotopic gliosarcomas, with adjuvant 
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radiotherapy conferring long-term survivorship to more than half of the animals and 

histology confirming that LTS are disease-free. Our LTS is comparable to that of 

BCNU/carmustine previously reported as pre-clinical support for the clinical 

translation of Gliadel® and also comparable to LTS of BCNU/TMZ treatment arms 

reported recently, with both these studies utilizing the 9L orthotopic test-bed (47,48). 

Indeed survival in the 9L preclinical model with BCNU/carmustine was highly 

predictive of efficacy in a clinical trial with Gliadel®, validating this model as 

clinically-relevant for neurosurgically-applied drug delivery (49,50), with recent 

meta-analyses conducted on the safety and significant clinical efficacy (albeit 

modest), of Gliadel®(51,52). One must however be cautious in over-simplifying 

observed preclinical survival benefit with anticipated clinical benefit; whereas long-

term survivorship was evident in the 9L/BCNU model, treatment with Gliadel® did 

not result in any long-term surviving patients during a phase III trial, with a modest 

median survival increase of 2.3 months relative to placebo-treated patients (15). 

Despite the 9L model likely over-predicting the clinical survival benefit of 

TMZ/ETOP delivered by PLGA/PEG in our study, the survival advantage to a subset 

of GBM patients when treated with Gliadel®, supports the consideration of our 

formulation for clinical trial and moreover presents a proof-of-concept for a Platform 

Technology with which to locally deliver other repurposed or experimental agents.  

 

Although ETOP locally-delivered via convection enhanced delivery (CED) has been 

shown to be efficacious against malignant glioma (53) and is consistent with our 

finding, the previous report did not assess survival benefit against  clinical standard of 

care (only versus untreated controls). Moreover, CED of ETOP was applied by intra-

tumoral administration of catheters and not targeted to clinically-relevant post-
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resection residual disease (53). Our findings warrant clinical translation consideration 

to test whether subsets of GBM patients may respond to localized ETOP therapy. 

 

Whereas TMZ instability has rarely been considered for local delivery studies 

historically, we have prepared PLGA/PEG using an organic-acid based carrier to 

ensure TMZ is not rapidly converted to its active components until diffusion-mediated 

release from the polymer. Although in vivo release kinetics may differ, a low pH 

carrier does not impair in vitro burst and total release of combined TMZ/ETOP from 

PLGA/PEG. Despite surgery/PLGA/PEG/TMZ conferring a median survival 

advantage over surgery/per orem TMZ, including one LTS, 9L is more sensitive to 

ETOP. Surgery/PLGA/PEG/ETOP is comparably efficacious to 

surgery/PLGA/PEG/TMZ/ETOP, consistent with comparable IC50 concentrations 

from combined ETOP/TMZ or ETOP alone in vitro. As our in vivo study was 

restricted to one malignant glioma tumor model, this does not exclude the potential 

efficacy of low pH PLGA/PEG/TMZ against subsets of GBM with varying degrees of 

MGMT promoter methylation or other molecular resistance mechanisms. Indeed our 

formulation is applicable for next-generation TMZ analogue compounds (synthesized 

by our host institution), which have shown in vitro GBM cytotoxicity in a 

methylguanine-DNA methyltransferase-independent manner (54,55).  

 

Although there is rationale for developing controlled and sustained release drug 

delivery formulations for GBM, it is likely that burst release of ETOP/TMZ (if in 

vitro release profiles are presumed to at least broadly be recapitulated in vivo) may 

have contributed to the observed efficacy. A high and local therapy dose with 

Research. 
on May 24, 2019. © 2019 American Association for Cancerclincancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on May 21, 2019; DOI: 10.1158/1078-0432.CCR-18-3850 

http://clincancerres.aacrjournals.org/


28 
 

sufficient tissue penetration, may therefore be effective against residual disease 

immediately post-surgery when tumor burden is relatively minimal.  

 

Despite using ETOP MTD determined from our previous GBM subcutaneous 

xenograft study (22), ETOP MTD was not reached for orthotopic dosing, indicating 

that dose limiting systemic toxicities are avoided by intra-cavity delivery, with no 

evidence of neurotoxicity. This finding, coupled to the status of PLGA as an FDA-

approved biodegradable medical implant material (56,57) with biocompatibility to 

brain tissue (58,59), indicates PLGA/PEG/ETOP/TMZ should be safe for clinical trial 

translation. 

 

In summary, PLGA/PEG paste mediated intra-cavity delivery of ETOP/TMZ as an 

adjuvant to XRT has a substantial and significant overall survival benefit in an 

orthotopic in vivo glioma model with absence of detectable residual tumor associated 

with long-term survivorship. Our findings support repurposing ETOP for PLGA/PEG 

localized delivery and offers a future platform for combination delivery of 

molecularly targeted compounds. PLGA/PEG paste is in principle applicable to any 

solid cancer, for which surgical resection is standard-of-care and for which tumor 

recurrence is local in at least a subset of patients. 
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Figure Legends 

 

Figure 1: In vitro release of TMZ and combined TMZ/ETOP from an acidic pH 

formulation of PLGA/PEG paste. (A) Scanning electron images of PLGA/PEG 

microparticulate paste moulded into 12mm x 6mm diameter cylindrical matrices, each 

loaded with 500µg TMZ and 0.05% lactic acid. PLGA/PEG microparticles retain the 

ability to sinter at 37°C to form a matrix, despite the addition of an organic acid in the 

carrier phase used to disperse TMZ and create the paste. Top – x50; Bottom – x500. 

(B) In vitro cumulative release of TMZ pro-drug from PLGA/PEG matrices loaded 

with 500µg of drug. The release study was performed in PBS (pH 7.4) at 37°C and 

TMZ quantified using LC-MS for a 10-day period, at which time-point, all the drug 

was released. Error bars indicate the standard error of the mean from three 

independent matrices. (C-D) Mass spectrum of a sample measured at Day 1 and Day 

7 of the in vitro release period showing the conservation of the TMZ molecular ion at 

195.14 m/z (indicated by asterisks). (E) In vitro dual cumulative release of TMZ and 

ETOP from PLGA/PEG matrices loaded with 500µg of each drug and containing 

lactic acid carrier phase, was performed in PBS (pH 7.4) at 37°C and quantified using 

LC-MS. TMZ shows a 7-day release profile where total pro-drug has been released 

and ETOP shows a 22-day release profile. Error bars indicate the standard error of 

the mean from three independent matrices. 
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Figure 2: In vitro cytotoxicity of human and rodent high-grade glioma cells 

exposed to TMZ and ETOP. (A) A panel of human GBM cell lines were exposed to 

a concentration range of 0.01 – 500µM ETOP over 72 hours. Sensitivity to ETOP was 

determined by impairment of metabolic activity (PrestoBlue assay), relative to 

vehicle-controlled untreated cells, with an observed IC50 concentration of 0.4µM +/- 

1.8 for U-373MG cells. Although a dose-dependent decrease in metabolic viability 

was observed for GIN-27, GIN-28 and GIN-31 lines derived from the GBM invasive 

margin, IC50 concentrations were not reached. (B) No IC50 concentrations were 

achieved for TMZ under any drug dose, although minimal but significant impaired 

metabolic viability was observed at 500µM TMZ after 72 hours: U-373MG – 79.9% 

viability +/- 5.5; GIN-27 – 89.0% viability +/- 3.5; GIN-28 – 86.5% viability +/- 3.02; 

GIN31 – 89.5% +/- 6.1. A-B - Error bars represent standard error of the mean from 

the three independent experiments. (C) Acute impairment of metabolic viability 

relative to vehicle-controlled untreated cells was observed in 9L rat gliosarcoma cells 

exposed to an ETOP dose range of 0.39-100µM over 72 hours, with an IC50 

concentration of <3.12µM (36.% viability +/- 3.0). (D) Impaired 9L metabolic 

viability was observed within a TMZ dose range of 15.6-2000µM over 72 hours, with 

an IC50 concentration of 500µM (52.5% viability +/- 4.7). (E) To determine synergy, 

the IC50 dose of TMZ (500µM) was added to individual wells containing ETOP at 

0.39-100µM for 72 hours, with an IC50 concentration of <3.12µM (39.4% viability +/- 

0.9) observed. (F) 9L cells exposed to TMZ, ETOP or combined TMZ/ETOP released 

from PLGA/PEG matrices resulted in 88.5% +/- 3.2, 50.0% +/- 1.0 and 45% +/- 2.2 

metabolic viability respectively, relative to cells exposed to PLGA/PEG containing no 

drug. 
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Figure 3: In vivo tolerability of PLGA/PEG/TMZ/ETOP in orthotopic gliomas. 

(A) Rat with surgically resected 9L tumor showing surgical cavity margins. (B) Rat 

with PLGA/PEG paste loaded with combined TMZ and ETOP, molded to the 

resection cavity lining. (C-D) Weight of rats measured daily for 15-20 days after 

surgery and polymer/drug implantation. C = rats implanted with 9L allografts 5 days 

before therapy intervention; D = rats implanted with 9L allografts on day of therapy 

intervention. Control = surgery/PLGA/PEG; Sham = surgery alone; Low dose = 

Surgery/PLGA/PEG containing 10% w/w TMZ (5mg) and 25% w/w ETOP (12.5mg); 

High dose = Surgery/PLGA/PEG containing 20% w/w TMZ (10mg) and 50% w/w 

ETOP (25mg). n = number of animals per arm.  

 

Figure 4: In vivo efficacy of interstitially-delivered PLGA/PEG/TMZ/ETOP in 

orthotopic glioma allografts. Kaplan-Meier overall survival plots of F344 rats that 

were implanted with 9L and either given no treatment or were randomized and treated 

5-days post allograft implant as follows: surgery + XRT + per orem TMZ by gavage 

(Stupp standard-of-care protocol, n=7); ; surgery + XRT; surgery + 50mg 

PLGA/PEG; surgery + 50mg PLGA/PEG containing 20% w/w TMZ and 50% w/w 

ETOP; Surgery + 50mg PLGA/PEG containing 20% w/w TMZ; Surgery + 50mg 

PLGA/PEG containing 50% w/w ETOP; surgery + 50mg PLGA/PEG containing 20% 

w/w TMZ and 50% w/w ETOP + XRT.  (A) Animals that received surgery, per orem 

TMZ and XRT (S/R/poT) (Stupp protocol) had a relatively increased median survival 

compared to untreated animals (9L control, n=7) and animals that received surgery 

and blank polymer (S/blank, n=7) (P < 0.0001 for each comparison). No significant 

difference was observed between the Stupp protocol and animals that received 

surgery and per orem TMZ (S/poT, n=7) (P = 0.336).  (B) Whilst animals that 
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received either surgery and PLGA/PEG/TMZ/ETOP (S/P/T&E, n=7), surgery and 

PLGA/PEG/ETOP (S/PE, n=7) or surgery and PLGA/PEG/TMZ (S/PT, n=7) had a 

relatively increased median survival compared to untreated animals (9L control, n=7) 

(P < 0.0001 for each comparison), animals that received either surgery and 

PLGA/PEG/TMZ/ETOP (S/P/T&E, n=7) or surgery and PLGA/PEG/ETOP (S/PE, 

n=7), had a relatively increased median survival compared to animals that received 

surgery and PLGA/PEG/TMZ (S/PT, n=7) (P < 0.0001 for each comparison).  (C) 

Animals that received surgery and PLGA/PEG/TMZ/ETOP with adjuvant XRT 

(S/P/T&E/R, n=7) had an increased mean survival relative to animals that received 

surgery and PLGA/PEG/TMZ/ETOP (S/P/T&E, n=7) (P < 0.0001). Animals alive at 

termination of experiment after 120 days post-surgery and polymer implant were 

deemed long-term survivors.  

 

Figure 5: Histological and immunohistochemical confirmation of efficacy after 

120 days post-PLGA/PEG/TMZ/ETOP interstitial delivery to orthotopic 9L 

gliosarcomas. Hematoxylin and eosin staining: (A) Control untreated Day 13, (B) 

surgery/per orem TMZ Day 13, (C) surgery/XRT/per orem TMZ Day 22, (D) 

surgery/XRT Day 26 and (E) surgery/blank PLGA/PEG Day 14, show extensive 

tumor recurrence and dense cellularity (denoted by *) within the surgical resection 

cavity (delineated by arrowhead) with tumor cells visibly infiltrating brain 

parenchyma (denoted by +). (F) Surgery/PLGA/PEG/TMZ/ETOP Day 120, (G) 

surgery/PLGA/PEG/ETOP Day 120 and (H) surgery/PLGA/PEG/TMZ/ETOP/XRT 

Day 120, show gliotic scarring but no recurrent tumor cells. Ki67 (proliferation 

marker) immunohistochemistry: (I) Control untreated day 13, (J) surgery/per orem 

TMZ Day 13, (K) surgery/XRT/per orem TMZ Day 36, (L) surgery/XRT day 26 and 
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(M) surgery/blank PLGA/PEG Day 12, reveal high numbers of proliferative cells 

which have infiltrated into the surgical resection cavity. (N) 

Surgery/PLGA/PEG/TMZ/ETOP Day 120, (O) surgery/PLGA/PEG/ETOP Day 120 

and (P) surgery/PLGA/PEG/TMZ/ETOP/XRT Day 120, show a surgical resection site 

with no visible proliferative cells.  All images taken at x40. Scale bar A-H 500µm. 

‘Days’ = days post-polymer implant. 

 

Table 1: Summary of median and mean overall survival in 9L orthotopic 

allografts treated with PLGA/PEG-delivered TMZ/ETOP +/- radiotherapy. 

Long-term survivors (LTS) are evident in PLGA/PEG treatment arms, relative to 

control arms with PLGA/PEG/TMZ/ETOP/XRT resulting in the highest relative 

percentage (57.1%) of LTS.  
a 
Estimation is limited to the largest survival time if it is 

censored. Group labels - T, 10mg temozolomide; E, 25mg etoposide; S, surgery; R, 

irradiation (10Gy); poT, per orem temozolomide (50mg/kg/day for 5 days).  
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Table 1 

Group (n=7 per 

group) 
Group 

(label) 

Mean
a
 

Survival 

(days) 

Median 

Survival 

(days) 

Standard 

Error 

Mean 

Long-

term 

Survivors 

(LTR) 

% 

LTR 

All Groups 

Combined  

All 42.8 31.0 11.9   

Untreated Control Control 12.5 13.0 0.2 0 - 

Surgery/XRT/Oral 

TMZ 

S/R/poT 26.0 26.0 1.8 0 - 

Surgery/Oral TMZ S/poT 21.2 19.0 2.3 0 - 

Surgery/XRT 

 

S/R 35.7 23.0 13.0 1 14.3 

Surgery/Blank 

PLGA-PEG 

S/blank 12.8 12.0 0.8 0 - 

Surgery/PLGA-

PEG-TMZ-ETOP 

S/PT&E 58.4 33.0 14.7 2 28.6 

Surgery/PLGA-

PEG-TMZ 

S/PT 31.0 16.0 13.7 1 14.3 

Surgery/PLGA-

PEG-ETOP 

S/PE 69.4 71.0 13.8 2 28.6 

Surgery/PLGA-

PEG-TMZ-

ETOP/XRT 

S/PT&E/R 76.8 N/A 18.9 4 57.1 
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