177 research outputs found

    The effect of an internet option and single-sided printing format to increase the response rate to a population-based study : a randomized controlled trial

    Get PDF
    Acknowledgements We would like to thank the Institute of Applied Health Sciences (IAHS) at the University of Aberdeen for funding the PhD studentship of EF. Furthermore, we would like to thank everyone who was involved in the study, including Professor Sir Lewis Ritchie (Director of Public Health, NHS Grampian), John Lemon (University of Aberdeen), Dr. Fiona Garton (University of Aberdeen) and the Aberdeen Service User Group. Lastly, we would like to acknowledge all data entry clerks (Maxx Livingstone, Rory Macfarlane, Georgia Mannion-Krase and Hazel Reilly) and participants of the study.Peer reviewedPublisher PD

    Uncertainty in fault seal parameters : implications for CO2 column height retention and storage capacity in geological CO2 storage projects

    Get PDF
    This research has been partly supported by the European Commission PANACEA project (grant no. 282900).Peer reviewedPublisher PD

    Expanding horizons: new roles for non-canonical RNA-binding proteins in cancer

    Get PDF
    Cancer development involves the stepwise accumulation of genetic lesions that overcome the normal regulatory pathways that prevent unconstrained cell division and tissue growth. Identification of the genetic changes that cause cancer has long been the subject of intensive study, leading to the identification of several RNA-binding proteins (RBPs) linked to cancer. Cross-reference of the complement of RBPs recently identified by RNA interactome capture with cancer-associated genes and biological processes led to the identification of a set of 411 proteins with potential implications in cancer biology. These involve a broad spectrum of cellular processes including response to stress, metabolism and cell adhesion. Future studies should aim to understand these proteins and their connection to cancer from an RNA-centred perspective, holding the promise of new mechanistic understanding of cancer formation and novel approaches to diagnosis and treatment

    Separation of Excitation Forces from Simulated Gas Turbine Casing Response Measurements

    Full text link
    Condition monitoring of blades within gas turbines has been and will continue to be of importance in all areas of their use, for maintenance and reliability purposes. Non-intrusive measurement of blade condition is the ambition of most techniques for this endeavour, with a number of methods proposed, investigated and employed for such measurement, with the current dominant method using proximity probes to measure blade arrival time for subsequent processing. It is proposed, however, that the measurement of the casing vibration, due to the aerodynamic-structural interaction within a gas turbine, could provide a means of blade condition monitoring and modal parameter estimation, without requiring perforation of the casing. An analytical model of a gas turbine casing and simulated pressure signal associated with the rotating blades, individual blade vibrations and transfer of stator blade vibrations has been developed in order to understand the complex relationship between casing response and the most important excitation forces. Due to the force interaction being through a fluid medium, a certain degree of randomness is introduced into the excitations, and the viability of this inherent randomness as a useful aid for separation of the contributing excitation forces from the system response is explored

    Fault interpretation in seismic reflection data : an experiment analysing the impact of conceptual model anchoring and vertical exaggeration

    Get PDF
    Juan Alcalde has been supported by the Natural Environment Research Council (grant no. NE/M007251/1) and the H2020 European Institute of Innovation and Technology (SIT4ME (grant no. 17024)). Clare E. Bond is currently funded through a Royal Society of Edinburgh research sabbatical on uncertainty in seismic image interpretation. Gareth Johnson is funded by the University of Strathclyde Faculty of Engineering. Oriol Ferrer has been supported by the SALCONBELT Project (grant no. CGL2017-85532-P), the Geomodels Research Institute and the Grup de Geodinàmica i Anàlisi de Conques (grant no. 2017SGR-596). Puy Ayarza is funded by the Regional Government of Castile and León (project SA065P17). The seismic image used in the experiment is available on the Virtual Seismic Atlas (https://www.seismicatlas.org, last access: 30 September 2019). The questionnaire presented to the participants is available in the Supplement. Interpretations and statistical analyses are available upon request.Peer reviewedPublisher PD

    Optimizing CRISPR/Cas9 Editing of Repetitive Single Nucleotide Variants

    Get PDF
    CRISPR/Cas9, base editors and prime editors comprise the contemporary genome editing toolbox. Many studies have optimized the use of CRISPR/Cas9, as the original CRISPR genome editing system, in substituting single nucleotides by homology directed repair (HDR), although this remains challenging. Studies describing modifications that improve editing efficiency fall short of isolating clonal cell lines or have not been validated for challenging loci or cell models. We present data from 95 transfections using a colony forming and an immortalized cell line comparing the effect on editing efficiency of donor template modifications, concentration of components, HDR enhancing agents and cold shock. We found that in silico predictions of guide RNA efficiency correlated poorly withactivity in cells. Using NGS and ddPCR we detected editing efficiencies of 5-12% in the transfected populations which fell to 1% on clonal cell line isolation. Our data demonstrate the variability of CRISPR efficiency by cell model, target locus and other factors. Successful genome editing requires a comparison of systems and modifications to develop the optimal protocol for the cell model and locus. We describe the steps in this process in a flowchart for those embarking on genome editing using any system and incorporate validated HDR-boosting modifications for those using CRISPR/Cas9

    Fault interpretation in seismic reflection data: an experiment analysing the impact of conceptual model anchoring and vertical exaggeration

    Get PDF
    The use of conceptual models is essential in the in- terpretation of reflection seismic data. It allows interpreters to make geological sense of seismic data, which carries inherent uncertainty. However, conceptual models can create powerful anchors that prevent interpreters from reassessing and adapting their interpretations as part of the interpretation process, which can subsequently lead to flawed or erroneous outcomes. It is therefore critical to understand how conceptual models are generated and applied to reduce unwanted effects in interpretation results. Here we have tested how interpretation of vertically exaggerated seismic data influenced the creation and adoption of the conceptual models of 161 participants in a paper-based interpretation experiment. Participants were asked to interpret a series of faults and a horizon, offset by those faults, in a seismic section. The seismic section was randomly presented to the participants with different horizontal-vertical exaggeration (1 : 4 or 1 : 2). Statistical analysis of the results indicates that early anchoring to specific conceptual models had the most impact on interpretation outcome, with the degree of vertical exaggeration having a subdued influence. Three different conceptual models were adopted by participants, constrained by initial observations of the seismic data. Interpreted fault dip angles show no evidence of other constraints (e.g. from the application of accepted fault dip models). Our results provide evidence of biases in interpretation of uncertain geological and geophysical data, including the use of heuristics to form initial conceptual models and anchoring to these models, confirming the need for increased understanding and mitigation of these biases to improve interpretation outcomes

    Impact of seismic image quality on fault interpretation uncertainty

    Get PDF
    BP/GUPCO are acknowledged for providing data from the Gulf of Suez. The authors acknowledge the support of MVE and use of Move software 2015.2 for this work. Ruediger Kilian is acknowledged for his kind help with the ImageJ code. Dr. Juan Alcalde is funded by NERC grant NE/M007251/1, on interpretational uncertainty. The work could not have been completed without the support of individuals within the geoscience community who took part in the interpretation experiment.Peer reviewedPublisher PD

    The Physical Characteristics of a CO2 Seeping Fault: the implications of fracture permeability for carbon capture and storage integrity

    Get PDF
    To ensure the effective long-term storage of CO2 in candidate geological storage sites, evaluation of potential leakage pathways to the surface should be undertaken. Here we use a series of natural CO2 seeps along a fault in South Africa to assess the controls on CO2 leakage to the surface. Geological mapping and detailed photogrammetry reveals extensive fracturing along the mapped fault trace. Measurements of gas flux and CO2 concentration across the fracture corridor give maximum soil gas measurements of 27% CO2 concentration and a flux of 191 g m−2 d−1. These measurements along with observations of gas bubbles in streams and travertine cones attest to CO2 migration to the surface. Permeability measurements on the host rock units show that the tillite should act as an impermeable seal to upward CO2 migration. The combined permeability and fracture mapping data indicate that fracture permeability creates the likely pathway for CO2 migration through the low permeability tillite to the surface. Heterogeneity in fracture connectivity and intensity at a range of scales will create local higher permeability pathways along the fracture corridor, although these may seal with time due to fluid-rock interaction. The results have implications for the assessment and choice of geological CO2 storage sites, particularly in the assessment of sub-seismic fracture networks
    corecore