151 research outputs found

    Continued fraction representation of the Coulomb Green's operator and unified description of bound, resonant and scattering states

    Full text link
    If a quantum mechanical Hamiltonian has an infinite symmetric tridiagonal (Jacobi) matrix form in some discrete Hilbert-space basis representation, then its Green's operator can be constructed in terms of a continued fraction. As an illustrative example we discuss the Coulomb Green's operator in Coulomb-Sturmian basis representation. Based on this representation, a quantum mechanical approximation method for solving Lippmann-Schwinger integral equations can be established, which is equally applicable for bound-, resonant- and scattering-state problems with free and Coulombic asymptotics as well. The performance of this technique is illustrated with a detailed investigation of a nuclear potential describing the interaction of two α\alpha particles.Comment: 7 pages, 4 ps figures, revised versio

    Gross shell structure at high spin in heavy nuclei

    Full text link
    Experimental nuclear moments of inertia at high spins along the yrast line have been determined systematically and found to differ from the rigid-body values. The difference is attributed to shell effects and these have been calculated microscopically. The data and quantal calculations are interpreted by means of the semiclassical Periodic Orbit Theory. From this new perspective, features in the moments of inertia as a function of neutron number and spin, as well as their relation to the shell energies can be understood. Gross shell effects persist up to the highest angular momenta observed.Comment: 40 pages total; 22 pages text, 19 figures sent as 27 .png file

    Calculation of the properties of the rotational bands of 155,157^{155,157}Gd

    Full text link
    We reexamine the long-standing problem of the microscopic derivation of a particle-core coupling model. We base our research on the Klein-Kerman approach, as amended by D\"onau and Frauendorf. We describe the formalism to calculate energy spectra and transition strengths in some detail. We apply our formalism to the rotational nuclei 155,157^{155,157}Gd, where recent experimental data requires an explanation. We find no clear evidence of a need for Coriolis attenuation.Comment: 27 pages, 13 uuencoded postscript figures. Uses epsf.st

    Nuclear Scissors Mode with Pairing

    Full text link
    The coupled dynamics of the scissors mode and the isovector giant quadrupole resonance are studied using a generalized Wigner function moments method taking into account pair correlations. Equations of motion for angular momentum, quadrupole moment and other relevant collective variables are derived on the basis of the time dependent Hartree-Fock-Bogoliubov equations. Analytical expressions for energy centroids and transitions probabilities are found for the harmonic oscillator model with the quadrupole-quadrupole residual interaction and monopole pairing force. Deformation dependences of energies and B(M1)B(M1) values are correctly reproduced. The inclusion of pair correlations leads to a drastic improvement in the description of qualitative and quantitative characteristics of the scissors mode.Comment: 36 pages, 5 figures, the results of calculation by another method and the section concerning currents are adde

    Halo Excitation of 6^6He in Inelastic and Charge-Exchange Reactions

    Get PDF
    Four-body distorted wave theory appropriate for nucleon-nucleus reactions leading to 3-body continuum excitations of two-neutron Borromean halo nuclei is developed. The peculiarities of the halo bound state and 3-body continuum are fully taken into account by using the method of hyperspherical harmonics. The procedure is applied for A=6 test-bench nuclei; thus we report detailed studies of inclusive cross sections for inelastic 6^6He(p,p')6^6He^* and charge-exchange 6^6Li(n,p)6^6He^* reactions at nucleon energy 50 MeV. The theoretical low-energy spectra exhibit two resonance-like structures. The first (narrow) is the excitation of the well-known 2+2^+ three-body resonance. The second (broad) bump is a composition of overlapping soft modes of multipolarities 1,2+,1+,0+1^-, 2^+, 1^+, 0^+ whose relative weights depend on transferred momentum and reaction type. Inelastic scattering is the most selective tool for studying the soft dipole excitation mode.Comment: Submitted to Phys. Rev. C., 11 figures using eps

    Sensitivities of the Proton-Nucleus Elastical Scattering Observables of 6He and 8He at Intermediate Energies

    Get PDF
    We investigate the use of proton-nucleus elastic scattering experiments using secondary beams of 6He and 8He to determine the physical structure of these nuclei. The sensitivity of these experiments to nuclear structure is examined by using four different nuclear structure models with different spatial features using a full-folding optical potential model. The results show that elastic scattering at intermediate energies (<100 MeV per nucleon) is not a good constraint to be used to determine features of structure. Therefore researchers should look elsewhere to put constraints on the ground state wave function of the 6He and 8He nuclei.Comment: To be published in Phys. Rev.

    Spin dynamics in the diluted ferromagnetic Kondo lattice model

    Get PDF
    The interplay of disorder and competing interactions is investigated in the carrier-induced ferromagnetic state of the Kondo lattice model within a numerical finite-size study in which disorder is treated exactly. Competition between impurity spin couplings, stability of the ferromagnetic state, and magnetic transition temperature are quantitatively investigated in terms of magnon properties for different models including dilution, disorder, and weakly-coupled spins. A strong optimization is obtained for T_c at hole doping p << x, highlighting the importance of compensation in diluted magnetic semiconductors. The estimated T_c is in good agreement with experimental results for Ga_{1-x}Mn_x As for corresponding impurity concentration, hole bandwidth, and compensation. Finite-temperature spin dynamics is quantitatively studied within a locally self-consistent magnon renormalization scheme, which yields a substantial enhancement in T_c due to spin clustering, and highlights the nearly-paramagnetic spin dynamics of weakly-coupled spins. The large enhancement in density of low-energy magnetic excitations due to disorder and competing interactions results in a strong thermal decay of magnetization, which fits well with the Bloch form M_0(1-BT^{3/2}) at low temperature, with B of same order of magnitude as obtained in recent squid magnetization measurements on Ga_{1-x}Mn_x As samples.Comment: 13 pages, 14 figure
    corecore