29,826 research outputs found

    High pressure rotary piston coal feeder

    Get PDF
    This feeder concept uniquely combines the functions of solids feeding, metering, and pressurization into one compact system. Success with the rotary-piston concept would provide a lower-cost alternative to lock-hopper systems. The design of the feeder is presented, with special emphasis on the difficult problem of seal design. Initial tests will be to check seal performance. Subsequent tests will evaluate solids-feeding ability

    Hierarchical solutions of the Sherrington-Kirkpatrick model: Exact asymptotic behavior near the critical temperature

    Full text link
    We analyze the replica-symmetry-breaking construction in the Sherrington-Kirkpatrick model of a spin glass. We present a general scheme for deriving an exact asymptotic behavior near the critical temperature of the solution with an arbitrary number of discrete hierarchies of the broken replica symmetry. We show that all solutions with finite-many hierarchies are unstable and only the scheme with infinite-many hierarchies becomes marginally stable. We show how the solutions from the discrete replica-symmetry-breaking scheme go over to the continuous one with increasing the number of hierarchies.Comment: REVTeX4, 11 pages, no figure

    Parisi Phase in a Neuron

    Full text link
    Pattern storage by a single neuron is revisited. Generalizing Parisi's framework for spin glasses we obtain a variational free energy functional for the neuron. The solution is demonstrated at high temperature and large relative number of examples, where several phases are identified by thermodynamical stability analysis, two of them exhibiting spontaneous full replica symmetry breaking. We give analytically the curved segments of the order parameter function and in representative cases compute the free energy, the storage error, and the entropy.Comment: 4 pages in prl twocolumn format + 3 Postscript figures. Submitted to Physical Review Letter

    Absence of anomalous negative lattice-expansion for polycrystalline sample of Tb2Ti2O7

    Full text link
    High resolution X-ray powder-diffraction experiments on a well-characterized polycrystalline sample of the spin liquid Tb2Ti2O7 reveal that it shows normal positive thermal-expansion above 4 K, which does not agree with the intriguing anomalous negative thermal-expansion due to a magneto-elastic coupling reported for a single crystal sample below 20 K. We also performed a Rietveld profile refinement of a powder-diffraction pattern taken at a room temperature, and confirmed that it is consistent with the fully ordered cubic pyrochlore structure.Comment: 2 pages, 3 figure

    Learners reconceptualising education: Widening participation through creative engagement?

    No full text
    This paper argues that engaging imaginatively with ways in which statutory and further education is provided and expanding the repertoire of possible transitions into higher education, is necessary for providers both in higher education and in the contexts and phases which precede study at this level. Fostering dispositions for creativity in dynamic engagement with educational technology together with the consideration of pedagogy, learning objects, inclusion, policy and the management of change, requires innovative provision to span the spaces between school, home, work and higher education learning. Reporting on The Aspire Pilot, a NESTA-funded initiative at The Open University, the paper offers the beginning of a theoretical frame for considering learning, learners and learning systems in the information age prioritizing learner agency. It will report emergent empirical findings from this inter-disciplinary project, with a significant e-dimension, which seeks to foster the creativity of 13-19 year olds in considering future learning systems, developing provocations for others to explore creative but grounded possibilities. It explores implications arising from this project for approaches that may facilitate widening participation in higher education

    Laboratory studies in ultraviolet solar physics

    Get PDF
    The research activity comprised the measurement of basic atomic processes and parameters which relate directly to the interpretation of solar ultraviolet observations and to the development of comprehensive models of the component structures of the solar atmosphere. The research was specifically directed towards providing the relevant atomic data needed to perform and to improve solar diagnostic techniques which probe active and quiet portions of the solar chromosphere, the transition zone, the inner corona, and the solar wind acceleration regions of the extended corona. The accuracy with which the physical conditions in these structures can be determined depends directly on the accuracy and completeness of the atomic and molecular data. These laboratory data are used to support the analysis programs of past and current solar observations (e.g., the Orbiting solar Observatories, the Solar Maximum Mission, the Skylab Apollo Telescope Mount, and the Naval Research Laboratory's rocket-borne High Resolution Telescope and Spectrograph). In addition, we attempted to anticipate the needs of future space-borne solar studies such as from the joint ESA/NASA Solar and Heliospheric Observatory (SOHO) spacecraft. Our laboratory activities stressed two categories of study: (1) the measurement of absolute rate coefficients for dielectronic recombination and electron impact excitation; and (2) the measurement of atomic transition probabilities for solar density diagnostics. A brief summary of the research activity is provided

    Unusual signatures of the ferromagnetic transition in the heavy Fermion compound UMn2_2Al20_{20}

    Full text link
    Magnetic susceptibility results for single crystals of the new cubic compounds UT2_2Al20_{20} (T=Mn, V, and Mo) are reported. Magnetization, specific heat, resistivity, and neutron diffraction results for a single crystal and neutron diffraction and inelastic spectra for a powder sample are reported for UMn2_2Al20_{20}. For T = V and Mo, temperature independent Pauli paramagnetism is observed. For UMn2_2Al20_{20}, a ferromagnetic transition is observed in the magnetic susceptibility at TcT_c = 20 K. The specific heat anomaly at TcT_c is very weak while no anomaly in the resistivity is seen at TcT_c. We discuss two possible origins for this behavior of UMn2_2Al20_{20}: moderately small moment itinerant ferromagnetism, or induced local moment ferromagnetism.Comment: 5 pages, 5 figures, to be published in Phys. rev.

    VLBI study of water maser emission in the Seyfert 2 galaxy NGC5793. I: Imaging blueshifted emission and the parsec-scale jet

    Get PDF
    We present the first result of VLBI observations of the blueshifted water maser emission from the type 2 Seyfert galaxy NGC5793, which we combine with new and previous VLBI observations of continuum emission at 1.7, 5.0, 8.4, 15, and 22 GHz. Maser emission was detected earlier in single-dish observations and found to have both red- and blueshifted features relative to the systemic velocity. We could image only the blueshifted emission, which is located 3.6 pc southwest of the 22 GHz continuum peak. The blueshifted emission was found to originate in two clusters that are separated by 0.7 milliarcsecond (0.16 pc). No compact continuum emission was found within 3.6 pc of the maser spot. A compact continuum source showing a marginally inverted spectrum between 1.7 and 5.0 GHz was found 4.2 pc southwest of the maser position. The spectral turnover might be due to synchrotron self-absorption caused by a shock in the jet owing to collision with dense gas, or it might be due to free-free absorption in an ionized screen possibly the inner part of a disk, foreground to the jet. The water maser may be part of a maser disk. If so, it would be rotating in the opposite sense to the highly inclined galactic disk observed in CO emission. We estimate a binding mass within 1 pc of the presumed nucleus to be on the order of 10^7 Msun. Alternatively, the maser emission could result from the amplification of a radio jet by foreground circumnuclear molecular gas. In this case, the high blueshift of the maser emission might mean that the masing region is moving outward away from the molecular gas surrounding an active nucleus.Comment: 20 pages, 6 figures, to appear in ApJ, Oct. 200

    Optimally adapted multi-state neural networks trained with noise

    Full text link
    The principle of adaptation in a noisy retrieval environment is extended here to a diluted attractor neural network of Q-state neurons trained with noisy data. The network is adapted to an appropriate noisy training overlap and training activity which are determined self-consistently by the optimized retrieval attractor overlap and activity. The optimized storage capacity and the corresponding retriever overlap are considerably enhanced by an adequate threshold in the states. Explicit results for improved optimal performance and new retriever phase diagrams are obtained for Q=3 and Q=4, with coexisting phases over a wide range of thresholds. Most of the interesting results are stable to replica-symmetry-breaking fluctuations.Comment: 22 pages, 5 figures, accepted for publication in PR

    Two dimensionality in quasi one-dimensional cobalt oxides

    Full text link
    By means of muon spin rotation and relaxation (μ+\mu^+SR) techniques, we have investigated the magnetism of quasi one-dimensional (1D) cobalt oxides AEn+2AE_{n+2}Con+1_{n+1}O3n+3_{3n+3} (AEAE=Ca, Sr and Ba, nn=1, 2, 3, 5 and \infty), in which the 1D CoO3_3 chain is surrounded by six equally spaced chains forming a triangular lattice in the abab-plane, using polycrystalline samples, from room temperature down to 1.8 K. For the compounds with nn=1 - 5, transverse field μ+\mu^+SR experiments showed the existence of a magnetic transition below \sim100 K. The onset temperature of the transition (TconT_{\rm c}^{\rm on}) was found to decrease with nn; from 100 K for nn=1 to 60 K for nn=5. A damped muon spin oscillation was observed only in the sample with nn=1 (Ca3_3Co2_2O6_6), whereas only a fast relaxation obtained even at 1.8 K in the other three samples. In combination with the results of susceptibility measurements, this indicates that a two-dimensional short-range antiferromagnetic (AF) order appears below TconT_{\rm c}^{\rm on} for all compounds with nn=1 - 5; but quasi-static long-range AF order formed only in Ca3_3Co2_2O6_6, below 25 K. For BaCoO3_3 (nn=\infty), as TT decreased from 300 K, 1D ferromagnetic (F) order appeared below 53 K, and a sharp 2D AF transition occurred at 15 K.Comment: 12 pages, 14 figures, and 2 table
    corecore