1,896 research outputs found

    Who Watches the Watchmen? An Appraisal of Benchmarks for Multiple Sequence Alignment

    Get PDF
    Multiple sequence alignment (MSA) is a fundamental and ubiquitous technique in bioinformatics used to infer related residues among biological sequences. Thus alignment accuracy is crucial to a vast range of analyses, often in ways difficult to assess in those analyses. To compare the performance of different aligners and help detect systematic errors in alignments, a number of benchmarking strategies have been pursued. Here we present an overview of the main strategies--based on simulation, consistency, protein structure, and phylogeny--and discuss their different advantages and associated risks. We outline a set of desirable characteristics for effective benchmarking, and evaluate each strategy in light of them. We conclude that there is currently no universally applicable means of benchmarking MSA, and that developers and users of alignment tools should base their choice of benchmark depending on the context of application--with a keen awareness of the assumptions underlying each benchmarking strategy.Comment: Revie

    Dynamic modeling of gene expression in prokaryotes: application to glucose-lactose diauxie in Escherichia coli

    Get PDF
    Coexpression of genes or, more generally, similarity in the expression profiles poses an unsurmountable obstacle to inferring the gene regulatory network (GRN) based solely on data from DNA microarray time series. Clustering of genes with similar expression profiles allows for a course-grained view of the GRN and a probabilistic determination of the connectivity among the clusters. We present a model for the temporal evolution of a gene cluster network which takes into account interactions of gene products with genes and, through a non-constant degradation rate, with other gene products. The number of model parameters is reduced by using polynomial functions to interpolate temporal data points. In this manner, the task of parameter estimation is reduced to a system of linear algebraic equations, thus making the computation time shorter by orders of magnitude. To eliminate irrelevant networks, we test each GRN for stability with respect to parameter variations, and impose restrictions on its behavior near the steady state. We apply our model and methods to DNA microarray time series' data collected on Escherichia coli during glucose-lactose diauxie and infer the most probable cluster network for different phases of the experiment.Comment: 20 pages, 4 figures; Systems and Synthetic Biology 5 (2011

    The interplay of intrinsic and extrinsic bounded noises in genetic networks

    Get PDF
    After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a genetic network. The influence of intrinsic and extrinsic noises on genetic networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i)(i) the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii)(ii) a model of enzymatic futile cycle and (iii)(iii) a genetic toggle switch. In (ii)(ii) and (iii)(iii) we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possibile functional role of bounded noises

    Helping editors, peer reviewers and authors improve the clarity, completeness and transparency of reporting health research

    Get PDF
    Inadequate reporting is problematic for several reasons. If authors do not provide sufficient details concerning the conduct of their study, readers are left with an incomplete picture of what was done. As such, they are not able to judge the merits of the results and interpret them. The EQUATOR Network is a new initiative aimed at improving the clarity and transparency of reporting health research

    Single-embryo transfer reduces clinical pregnancy rates and live births in fresh IVF and Intracytoplasmic Sperm Injection (ICSI) cycles: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has become an accepted procedure to transfer more than one embryo to the patient to achieve acceptable ongoing pregnancy rates. However, transfers of more than a single embryo increase the probability of establishing a multiple gestation. Single-embryo transfer can minimize twin pregnancies but may also lower live birth rates. This meta-analysis aimed to compare current data on single-embryo versus double-embryo transfer in fresh IVF/ICSI cycles with respect to implantation, ongoing pregnancy and live birth rates.</p> <p>Methods</p> <p>Search strategies included on-line surveys of databases from 1995 to 2008. Data management and analysis were conducted using the Stats Direct statistical software. The fixed-effect model was used for odds ratio (OR). Fixed-effect effectiveness was evaluated by the Mantel Haenszel method. Seven trials fulfilled the inclusion criteria.</p> <p>Results</p> <p>When pooling results under the fixed-effect model, the implantation rate was not significantly different between double-embryo transfer (34.5%) and single-embryo transfer group (34.7%) (<it>P </it>= 0.96; OR = 0.99, 95% CI 0.78, 1.25). On the other hand, double-embryo transfer produced a statistically significantly higher ongoing clinical pregnancy rate (44.5%) than single-embryo transfer (28.3%) (<it>P </it>< 0.0001; OR:2.06, 95% CI = 1.64,2.60). At the same time, pooling results presented a significantly higher live birth rate when double-embryo transfer (42.5%) (P < 0.001; OR: 1.87, 95% CI = 1.44,2.42) was compared with single-embryo transfer (28.4%).</p> <p>Conclusion</p> <p>Meta-analysis with 95% confidence showed that, despite similar implantation rates, fresh double-embryo transfer had a 1.64 to 2.60 times greater ongoing pregnancy rate and 1.44 to 2.42 times greater live birth rate than single-embryo transfer in a population suitable for ART treatment.</p

    Effective-Range Expansion of the Neutron-Deuteron Scattering Studied by a Quark-Model Nonlocal Gaussian Potential

    Full text link
    The S-wave effective range parameters of the neutron-deuteron (nd) scattering are derived in the Faddeev formalism, using a nonlocal Gaussian potential based on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy eigenphase shift is sufficiently attractive to reproduce predictions by the AV18 plus Urbana three-nucleon force, yielding the observed value of the doublet scattering length and the correct differential cross sections below the deuteron breakup threshold. This conclusion is consistent with the previous result for the triton binding energy, which is nearly reproduced by fss2 without reinforcing it with the three-nucleon force.Comment: 21 pages, 6 figures and 6 tables, submitted to Prog. Theor. Phy

    Construction and Modelling of an Inducible Positive Feedback Loop Stably Integrated in a Mammalian Cell-Line

    Get PDF
    Understanding the relationship between topology and dynamics of transcriptional regulatory networks in mammalian cells is essential to elucidate the biology of complex regulatory and signaling pathways. Here, we characterised, via a synthetic biology approach, a transcriptional positive feedback loop (PFL) by generating a clonal population of mammalian cells (CHO) carrying a stable integration of the construct. The PFL network consists of the Tetracycline-controlled transactivator (tTA), whose expression is regulated by a tTA responsive promoter (CMV-TET), thus giving rise to a positive feedback. The same CMV-TET promoter drives also the expression of a destabilised yellow fluorescent protein (d2EYFP), thus the dynamic behaviour can be followed by time-lapse microscopy. The PFL network was compared to an engineered version of the network lacking the positive feedback loop (NOPFL), by expressing the tTA mRNA from a constitutive promoter. Doxycycline was used to repress tTA activation (switch off), and the resulting changes in fluorescence intensity for both the PFL and NOPFL networks were followed for up to 43 h. We observed a striking difference in the dynamics of the PFL and NOPFL networks. Using non-linear dynamical models, able to recapitulate experimental observations, we demonstrated a link between network topology and network dynamics. Namely, transcriptional positive autoregulation can significantly slow down the “switch off” times, as comparared to the nonautoregulatated system. Doxycycline concentration can modulate the response times of the PFL, whereas the NOPFL always switches off with the same dynamics. Moreover, the PFL can exhibit bistability for a range of Doxycycline concentrations. Since the PFL motif is often found in naturally occurring transcriptional and signaling pathways, we believe our work can be instrumental to characterise their behaviour

    A hybrid discrete bubble-lattice Boltzmann–discrete element model for gas-charged sediments

    Get PDF
    This paper presents a hybrid discrete bubble-lattice Boltzmann–discrete element modelling framework for simulating gas-charged sediments, especially in the seabed. A discrete bubble model proposed in chemical engineering is adapted in the coupled discrete element/lattice Boltzmann method to model the migration of gas bubbles in saturated sediments involving interactions between gas bubbles and fluid/solid phases. Surface tension is introduced into the discrete bubble model in this work, so that it can handle the complex gas–fluid–solid interface. The lattice Boltzmann and discrete element methods are, respectively, employed to simulate fluid flows and mechanical behaviours of sediments. A velocity interpolation-based immerse boundary method is utilised to resolve the coupling between the fluid flow and the solid/gas phase. The proposed technique is preliminarily validated using simulations of bubble migration in fluids, which is followed by high-resolution investigations of the transport of a gas bubble in seabed sediments. It is demonstrated that this hybrid method can reproduce, to a certain degree, the characters of bubbles moving in seabed sediment tests
    • …
    corecore