1,682 research outputs found
\u3cem\u3eWhen Your Number’s Up: The Canadian Soldier in the First World War\u3c/em\u3e by Desmond Morton [Review]
Review of Desmond Morton, When Your Number\u27s Up: The Canadian Soldier in the First World War. Toronto: Random House, 1993
The Meaning of Death: Evolution and Ecology of Apoptosis in Protozoan Parasites
The discovery that an apoptosis-like, programmed cell death (PCD) occurs in a broad range of protozoan parasites offers novel therapeutic tools to treat some of the most serious infectious diseases of humans, companion animals, wildlife, and livestock. Whilst apoptosis is an essential part of normal development, maintenance, and defence in multicellular organisms, its occurrence in unicellular parasites appears counter-intuitive and has proved highly controversial: according to the Darwinian notion of “survival of the fittest”, parasites are expected to evolve strategies to maximise their proliferation, not death. The prevailing, and untested, opinion in the literature is that parasites employ apoptosis to “altruistically” self-regulate the intensity of infection in the host/vector. However, evolutionary theory tells us that at most, this can only be part of the explanation, and other non-mutually exclusive hypotheses must also be tested. Here, we explain the evolutionary concepts that can explain apoptosis in unicellular parasites, highlight the key questions, and outline the approaches required to resolve the controversy over whether parasites “commit suicide”. We highlight the need for integration of proximate and functional approaches into an evolutionary framework to understand apoptosis in unicellular parasites. Understanding how, when, and why parasites employ apoptosis is central to targeting this process with interventions that are sustainable in the face of parasite evolution
Development of the text of the Ramsar Convention: 1965–1971
The ‘Ramsar’ Convention on Wetlands was the first of the modern era global biodiversity conventions and
remains the only multilateral environmental agreement focused on a single group of ecosystem types. At the time of initial
discussions within the wetland conservation science community in the late 1960s, its ambition was unprecedented, with no
successful models to draw upon, especially with regard to novel concepts such as the modus for an ‘internationally
protected site’. Drawing on previously unpublished draft texts, we track the Convention’s textual development to its
ultimate agreement in 1971. During this period its geographic scope changed from an initial European to global focus,
whereas core obligations related to the designation of internationally important wetlands and the provision of secretariat coordination functions were substantively developed. We present (as supplementary material) all draft texts, from 1965 to 1971, previously unavailable online
Disentangling genetic from environmental effects on phenotypic variability of Southern rock lobster (Jasus edwardsii) postlarvae
Environmental conditions experienced during larval dispersal of marine organisms can determine size-at-settlement of recruits. It is, therefore, not uncommon that larvae undergoing different dispersal histories would exhibit phenotypic variability at recruitment. Here we investigated morphological differences in recently settled southern rock lobster (Jasus edwardsii) recruits, known as pueruli, along a latitudinal and temporal gradient on the east coast of Tasmania, Australia. We further explored whether natural selection could be driving morphological variation. We used double digest restriction-site associated DNA sequencing (ddRADseq) to assess differences in genetic structure of recently settled recruits on the east coast of Tasmania over three months of peak settlement during 2012 (August, September and October). Phenotypic differences in pueruli between sites and months of settlement were observed, with significantly smaller individuals found at the northernmost site. Also, there was a lack of overall genetic divergence; however, significant differences in pairwise FST values between settlement months were observed at the southernmost study site, located at an area of confluence of ocean currents. Specifically, individuals settling into the southernmost earlier in the season were genetically different from those settling later. The lack of overall genetic divergence in the presence of phenotypic variation indicates that larval environmental history during dispersal of J. edwardsii could be a possible driver of the resulting phenotype of settlers
The influence of preseason training phase and training load on body composition and its relationship with physical qualities in professional junior rugby league players
This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Sports Sciences on 08/05/2018, available online: https://www.tandfonline.com/doi/full/10.1080/02640414.2018.1473993This study investigated changes in body composition in relation to training load determined using RPE and duration (sRPE), and its relationship with physical qualities over a preseason period. Sixteen professional academy players (age = 17.2 ± 0.7 years; stature = 179.9 ± 4.9 cm; body mass = 88.5 ± 10.1 kg) participated in the study. Body composition was assessed before and after each training phase and physical qualities assessed at the start and end of preseason. Across the whole preseason period, skinfold thickness, body fat percentage and fat mass were most likely lower (ES = -0.73 to -1.00), and fat free mass and lean mass were likely to most likely higher (ES = 0.31 to 0.40). Results indicated that the magnitude of change appeared phase-dependent (ES = -0.05 to -0.85) and demonstrated large individual variability. Changes in physical qualities ranged from unclear to most likely (ES = -0.50 to 0.64). Small to moderate correlations were observed between changes in body composition, and TL with changes in physical qualities. This study suggests training phase and TL can influence a player’s body composition; that large inter-participant variability exists; and that body composition and TL are related to the change in physical qualities
A large-scale pedigree resource of wheat reveals evidence for adaptation and selection by breeders
<div><p>Information on crop pedigrees can be used to help maximise genetic gain in crop breeding and allow efficient management of genetic resources. We present a pedigree resource of 2,657 wheat (<i>Triticum aestivum</i> L.) genotypes originating from 38 countries, representing more than a century of breeding and variety development. Visualisation of the pedigree enables illustration of the key developments in United Kingdom wheat breeding, highlights the wide genetic background of the UK wheat gene pool, and facilitates tracing the origin of beneficial alleles. A relatively high correlation between pedigree- and marker-based kinship coefficients was found, which validated the pedigree and enabled identification of errors in the pedigree or marker data. Using simulations with a combination of pedigree and genotype data, we found evidence for significant effects of selection by breeders. Within crosses, genotypes are often more closely related than expected by simulations to one of the parents, which indicates selection for favourable alleles during the breeding process. Selection across the pedigree was demonstrated on a subset of the pedigree in which 110 genotyped varieties released before the year 2000 were used to simulate the distribution of marker alleles of 45 genotyped varieties released after the year 2000, in the absence of selection. Allelic diversity in the 45 varieties was found to deviate significantly from the simulated distributions at a number of loci, indicating regions under selection over this period. The identification of one of these regions as coinciding with a strong yield component quantitative trait locus (QTL) highlights both the potential of the remaining loci as wheat breeding targets for further investigation, as well as the utility of this pedigree-based methodology to identify important breeding targets in other crops. Further evidence for selection was found as greater linkage disequilibrium (LD) for observed versus simulated genotypes within all chromosomes. This difference was greater at shorter genetic distances, indicating that breeder selections have conserved beneficial linkage blocks. Collectively, this work highlights the benefits of generating detailed pedigree resources for crop species. The wheat pedigree database developed here represents a valuable community resource and will be updated as new varieties are released at <a href="https://www.niab.com/pages/id/501/UK_Wheat_varieties_Pedigree" target="_blank">https://www.niab.com/pages/id/501/UK_Wheat_varieties_Pedigree</a>.</p></div
- …