1,415 research outputs found

    Inefficiency of classically simulating linear optical quantum computing with Fock-state inputs

    Get PDF
    Aaronson and Arkhipov recently used computational complexity theory to argue that classical computers very likely cannot efficiently simulate linear, multimode, quantum-optical interferometers with arbitrary Fock-state inputs [Aaronson and Arkhipov, Theory Comput. 9, 143 (2013)]. Here we present an elementary argument that utilizes only techniques from quantum optics. We explicitly construct the Hilbert space for such an interferometer and show that its dimension scales exponentially with all the physical resources. We also show in a simple example just how the Schr\"odinger and Heisenberg pictures of quantum theory, while mathematically equivalent, are not in general computationally equivalent. Finally, we conclude our argument by comparing the symmetry requirements of multiparticle bosonic to fermionic interferometers and, using simple physical reasoning, connect the nonsimulatability of the bosonic device to the complexity of computing the permanent of a large matrix.Comment: 7 pages, 1 figure Published in PRA Phys. Rev. A 89, 022328 (2014

    Computerized system for translating a torch head

    Get PDF
    The system provides a constant travel speed along a contoured workpiece. It has a driven skate characterized by an elongated bed, with a pair of independently pivoted trucks connected to the bed for support. The trucks are mounted on a contoured track of arbitrary configuration in a mutually spaced relation. An axially extensible torch head manipulator arm is mounted on the bed of the carriage and projects perpendicular from the midportion. The torch head is mounted at its distal end. A real-time computerized control drive subsystem is used to advance the skate along the track of a variable rate for maintaining a constant speed for the torch head tip, and to position the torch axis relative to a preset angle to the workpiece

    Phase sensitivity at the Heisenberg limit in an SU(1,1) interferometer via parity detection

    Get PDF
    We theoretically investigate the phase sensitivity with parity detection on an SU(1,1) interferometer with a coherent state combined with a squeezed vacuum state. This interferometer is formed with two parametric amplifiers for beam splitting and recombination instead of beam splitters. We show that the sensitivity of estimation phase approaches Heisenberg limit and give the corresponding optimal condition. Moreover, we derive the quantum Cram\'er-Rao bound of the SU(1,1) interferometer.Comment: 9 pages, 2 figures, 3 table

    Prenatal Smoke Exposure Predicts Hyperactive/Impulsive but Not Inattentive ADHD Symptoms in Adolescent and Young Adult Girls

    Full text link
    We examined the longitudinal associations between prenatal tobacco smoke exposure (PSE) and attention‐deficit hyperactivity disorder (ADHD) symptom domains in adolescence and young adulthood. A sample of girls with ADHD combined presentation (N = 93), ADHD predominantly inattentive presentation (N = 47), and matched comparisons (N = 88) was assessed prospectively. Symptoms of hyperactivity/impulsivity (HI), inattention (IA), and oppositionality (oppositional defiant disorder) were measured via multiple informants 5 (M age = 14 years; retention rate = 92%) and 10 years (M age = 20 years; retention rate = 95%) following childhood ascertainment. PSE was captured via maternal self‐report. We used linear regressions to examine the prediction from PSE to both HI and IA in adolescence and early adulthood after stringent control of relevant confounding variables. PSE significantly predicted HI during adolescence and young adulthood across multiple informants but did not predict IA at either wave. Symptoms of HI may have partial etiological independence from IA symptoms. Copyright © 2015 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/133536/1/icd1943_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/133536/2/icd1943.pd

    Reduction and reconstruction of stochastic differential equations via symmetries

    Full text link
    An algorithmic method to exploit a general class of infinitesimal symmetries for reducing stochastic differential equations is presented and a natural definition of reconstruction, inspired by the classical reconstruction by quadratures, is proposed. As a side result the well-known solution formula for linear one-dimensional stochastic differential equations is obtained within this symmetry approach. The complete procedure is applied to several examples with both theoretical and applied relevance

    Rapidly driven nanoparticles: Mean first-passage times and relaxation of the magnetic moment

    Full text link
    We present an analytical method of calculating the mean first-passage times (MFPTs) for the magnetic moment of a uniaxial nanoparticle which is driven by a rapidly rotating, circularly polarized magnetic field and interacts with a heat bath. The method is based on the solution of the equation for the MFPT derived from the two-dimensional backward Fokker-Planck equation in the rotating frame. We solve these equations in the high-frequency limit and perform precise, numerical simulations which verify the analytical findings. The results are used for the description of the rates of escape from the metastable domains which in turn determine the magnetic relaxation dynamics. A main finding is that the presence of a rotating field can cause a drastic decrease of the relaxation time and a strong magnetization of the nanoparticle system. The resulting stationary magnetization along the direction of the easy axis is compared with the mean magnetization following from the stationary solution of the Fokker-Planck equation.Comment: 24 pages, 4 figure

    Sterilization of lung matrices by supercritical carbon dioxide

    Get PDF
    Lung engineering is a potential alternative to transplantation for patients with end-stage pulmonary failure. Two challenges critical to the successful development of an engineered lung developed from a decellularized scaffold include (i) the suppression of resident infectious bioburden in the lung matrix, and (ii) the ability to sterilize decellularized tissues while preserving the essential biological and mechanical features intact. To date, the majority of lungs are sterilized using high concentrations of peracetic acid (PAA) resulting in extracellular matrix (ECM) depletion. These mechanically altered tissues have little to no storage potential. In this study, we report a sterilizing technique using supercritical carbon dioxide (ScCO(2)) that can achieve a sterility assurance level 10(−6) in decellularized lung matrix. The effects of ScCO(2) treatment on the histological, mechanical, and biochemical properties of the sterile decellularized lung were evaluated and compared with those of freshly decellularized lung matrix and with PAA-treated acellular lung. Exposure of the decellularized tissue to ScCO(2) did not significantly alter tissue architecture, ECM content or organization (glycosaminoglycans, elastin, collagen, and laminin), observations of cell engraftment, or mechanical integrity of the tissue. Furthermore, these attributes of lung matrix did not change after 6 months in sterile buffer following sterilization with ScCO(2), indicating that ScCO(2) produces a matrix that is stable during storage. The current study's results indicate that ScCO(2) can be used to sterilize acellular lung tissue while simultaneously preserving key biological components required for the function of the scaffold for regenerative medicine purposes

    Cognitive-enhancing effects of angiotensin IV

    Get PDF
    Angiotensin IV is a derivative of the potent vasoconstrictor angiotensin II and it has been shown to enhance acquisition, consolidation and recall in animal models of learning and memory when administered centrally or peripherally. Whether changes in angiotensin IV activity underlie the cognitive effects of those cardiovascular drugs designed to disrupt the peripheral renin-angiotensin system in humans remains undetermined, but angiotensin IV appears to be a worthy candidate for consideration in drug development programmes. The mechanism of action of angiotensin IV is still debated, although its AT4 receptor has been convincingly identified as being insulin-regulated amino peptidase, which is also known as oxytocinase and placental leucine aminopeptidase. It is speculated that angiotensin IV may interact with insulin-regulated amino peptidase to enhance neuronal glucose uptake, prevent metabolism of other neuroactive peptides, induce changes in extracellular matrix molecules, or induce release of acetylcholine and/or dopamine. All of these things may be responsible for the beneficial effects on cognition, but none of them are yet proven. Importantly, strain differences in murine responses to angiotensin IV suggest that some individuals may benefit from drugs targeted to the AT4 receptor whilst others may be refractory. At present it thus appears that those individuals with the poorest baseline cognition may receive greatest benefit, but possible genetic differences in responses to angiotensin IV cannot be ruled-out
    corecore