47 research outputs found

    Failure time and critical behaviour of fracture precursors in heterogeneous materials

    Full text link
    The acoustic emission of fracture precursors, and the failure time of samples of heterogeneous materials (wood, fiberglass) are studied as a function of the load features and geometry. It is shown that in these materials the failure time is predicted with a good accuracy by a model of microcrack nucleation proposed by Pomeau. We find that the time interval % \delta t between events (precursors) and the energy ε\varepsilon are power law distributed and that the exponents of these power laws depend on the load history and on the material. In contrast, the cumulated acoustic energy EE presents a critical divergency near the breaking time τ\tau which is % E\sim \left( \frac{\tau -t}\tau \right) ^{-\gamma }. The positive exponent % \gamma is independent, within error bars, on all the experimental parameters.Comment: to be published on European Physical Journa

    Unjamming a granular hopper by vibration

    Get PDF
    We present an experimental study of the outflow of a hopper continuously vibrated by a piezoelectric device. Outpouring of grains can be achieved for apertures much below the usual jamming limit observed for non vibrated hoppers. Granular flow persists down to the physical limit of one grain diameter, a limit reached for a finite vibration amplitude. For the smaller orifices, we observe an intermittent regime characterized by alternated periods of flow and blockage. Vibrations do not significantly modify the flow rates both in the continuous and the intermittent regime. The analysis of the statistical features of the flowing regime shows that the flow time significantly increases with the vibration amplitude. However, at low vibration amplitude and small orifice sizes, the jamming time distribution displays an anomalous statistics

    Role of vibrations in the jamming and unjamming of grains discharging from a silo

    Get PDF
    We present experimental results of the jamming of non-cohesive particles discharged from a flat bottomed silo subjected to vertical vibration. When the exit orifice is only a few grain diameter wide, the flow can be arrested due to the formation of blocking arches. Hence, an external excitation is needed to resume the flow. The use of a continuous gentle vibration is a usual technique to ease the flow in such situations. Even though jamming is less frequent, it is still an issue in vibrated silos. There are, in principle, two possible mechanisms through which vibrations may facilitate the flow: (i) a decrease in the probability of the formation of blocking arches, and (ii) the breakage of blocking arches once they have been formed. By measuring the time intervals inside an avalanche during which no particles flow through the outlet, we are able to estimate the probability of breaking a blocking arch by vibrations. The result agrees with the prediction of a bivariate probabilistic model in which the formation of blocking arches is equally probable in vibrated and non-vibrated silos. This indicates that the second aforementioned mechanism is the main responsible for improving the flowability in gently vibrated silos

    Time dependence of breakdown in a global fiber-bundle model with continuous damage

    Full text link
    A time-dependent global fiber-bundle model of fracture with continuous damage is formulated in terms of a set of coupled non-linear differential equations. A first integral of this set is analytically obtained. The time evolution of the system is studied by applying a discrete probabilistic method. Several results are discussed emphasizing their differences with the standard time-dependent model. The results obtained show that with this simple model a variety of experimental observations can be qualitatively reproduced.Comment: APS style, two columns, 4 figures. To appear in Phys. Rev.

    Statistical properties of acoustic emission signals from metal cutting processes

    Full text link
    Acoustic Emission (AE) data from single point turning machining are analysed in this paper in order to gain a greater insight of the signal statistical properties for Tool Condition Monitoring (TCM) applications. A statistical analysis of the time series data amplitude and root mean square (RMS) value at various tool wear levels are performed, �nding that ageing features can be revealed in all cases from the observed experimental histograms. In particular, AE data amplitudes are shown to be distributed with a power-law behaviour above a cross-over value. An analytic model for the RMS values probability density function (pdf) is obtained resorting to the Jaynes' maximum entropy principle (MEp); novel technique of constraining the modelling function under few fractional moments, instead of a greater amount of ordinary moments, leads to well-tailored functions for experimental histograms.Comment: 16 pages, 7 figure

    The effects of grain shape and frustration in a granular column near jamming

    Full text link
    We investigate the full phase diagram of a column of grains near jamming, as a function of varying levels of frustration. Frustration is modelled by the effect of two opposing fields on a grain, due respectively to grains above and below it. The resulting four dynamical regimes (ballistic, logarithmic, activated and glassy) are characterised by means of the jamming time of zero-temperature dynamics, and of the statistics of attractors reached by the latter. Shape effects are most pronounced in the cases of strong and weak frustration, and essentially disappear around a mean-field point.Comment: 17 pages, 19 figure

    Fracture model with variable range of interaction

    Full text link
    We introduce a fiber bundle model where the interaction among fibers is modeled by an adjustable stress-transfer function which can interpolate between the two limiting cases of load redistribution, the global and the local load sharing schemes. By varying the range of interaction several features of the model are numerically studied and a crossover from mean field to short range behavior is obtained. The properties of the two regimes and the emergence of the crossover in between are explored by numerically studying the dependence of the ultimate strength of the material on the system size, the distribution of avalanches of breakings, and of the cluster sizes of broken fibers. Finally, we analyze the moments of the cluster size distributions to accurately determine the value at which the crossover is observed.Comment: 8 pages, 8 figures. Two columns revtex format. Final version to be published in Phys. Rev.

    Cognition and schizophrenia: from neurocognition to social cognition

    Get PDF
    Los déficit neurocognitivos en la esquizofrenia han sido descritos desde las primeras descripciones del trastorno. Su influencia en la funcionalidad y en la calidad de vida ha sido puesta de manifiesto en múltiples estudios. La iniciativa Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) del National Institute of Mental Health (NIMH) de Estados Unidos fue puesta en marcha para impulsar el desarrollo de una batería cognitiva de consenso que pudiera ser empleada en ensayos clínicos de fármacos para mejorar la neurocognición en la esquizofrenia. Aunque en el momento de consensuar los diferentes dominios cognitivos que deberían ser incluidos en dicha batería, la denominada cognición social no cumplía con los requisitos para ser incluida, se decidió finalmente incluir este dominio dada la importante relación con la funcionalidad que presentaba. Estudios posteriores han demostrado el acierto de incluir dicho dominio cognitivo, dada la relevancia que la cognición social ha demostrado en relación a la funcionalidad y calidad de vida de los pacientes con esquizofrenia; bien como variable per se, o bien como variable mediadora entre la neurocognición y la funcionalidad

    Statistical properties of microcracking in polyurethane foams under tensile test, influence of temperature and density

    Get PDF
    We report tensile failure experiments on polyurethane (PU) foams. Experiments have been performed by imposing a constant strain rate. We work on heterogeneous materials for whom the failure does not occur suddenly and can develop as a multistep process through a succession of microcracks that end at pores. The acoustic energy and the waiting times between acoustic events follow power-law distributions. This remains true while the foam density is varied. However, experiments at low temperatures (PU foams more brittle) have not yielded power-laws for the waiting times. The cumulative acoustic energy has no power law divergence at the proximity of the failure point which is qualitatively in agreement with other experiments done at imposed strain. We notice a plateau in cumulative acoustic energy that seems to occur when a single crack starts to propagate
    corecore