3,001 research outputs found

    Extraordinary exciton conductance induced by strong coupling

    Full text link
    We demonstrate that exciton conductance in organic materials can be enhanced by several orders of magnitude when the molecules are strongly coupled to an electromagnetic mode. Using a 1D model system, we show how the formation of a collective polaritonic mode allows excitons to bypass the disordered array of molecules and jump directly from one end of the structure to the other. This finding could have important implications in the fields of exciton transistors, heat transport, photosynthesis, and biological systems in which exciton transport plays a key role.Comment: Main text: 5 pages, 4 figures; Supplemental: 2 pages, 1 figure. Version 2: Updated reference to related work arXiv:1409.2550. Version 3: Updated to version accepted for publication in Physical Review Letter

    Cavity-induced modifications of molecular structure in the strong coupling regime

    Full text link
    In most theoretical descriptions of collective strong coupling of organic molecules to a cavity mode, the molecules are modeled as simple two-level systems. This picture fails to describe the rich structure provided by their internal rovibrational (nuclear) degrees of freedom. We investigate a first-principles model that fully takes into account both electronic and nuclear degrees of freedom, allowing an exploration of the phenomenon of strong coupling from an entirely new perspective. First, we demonstrate the limitations of applicability of the Born-Oppenheimer approximation in strongly coupled molecule-cavity structures. For the case of two molecules, we also show how dark states, which within the two-level picture are effectively decoupled from the cavity, are indeed affected by the formation of collective strong coupling. Finally, we discuss ground-state modifications in the ultra-strong coupling regime and show that some molecular observables are affected by the collective coupling strength, while others only depend on the single-molecule coupling constant.Comment: 12 pages, 8 figure

    Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode

    Full text link
    We develop a quantum mechanical formalism to treat the strong coupling between an electromagnetic mode and a vibrational excitation of an ensemble of organic molecules. By employing a Bloch-Redfield-Wangsness approach, we show that the influence of dephasing-type interactions, i.e., elastic collisions with a background bath of phonons, critically depends on the nature of the bath modes. In particular, for long-range phonons corresponding to a common bath, the dynamics of the "bright state" (the collective superposition of molecular vibrations coupling to the cavity mode) is effectively decoupled from other system eigenstates. For the case of independent baths (or short-range phonons), incoherent energy transfer occurs between the bright state and the uncoupled dark states. However, these processes are suppressed when the Rabi splitting is larger than the frequency range of the bath modes, as achieved in a recent experiment [Shalabney et al., Nat. Commun. 6, 5981 (2015)]. In both cases, the dynamics can thus be described through a single collective oscillator coupled to a photonic mode, making this system an ideal candidate to explore cavity optomechanics at room temperature.Comment: 13 pages, 4 figure

    Magnetic-field control of near-field radiative heat transfer and the realization of highly tunable hyperbolic thermal emitters

    Get PDF
    We present a comprehensive theoretical study of the magnetic field dependence of the near-field radiative heat transfer (NFRHT) between two parallel plates. We show that when the plates are made of doped semiconductors, the near-field thermal radiation can be severely affected by the application of a static magnetic field. We find that irrespective of its direction, the presence of a magnetic field reduces the radiative heat conductance, and dramatic reductions up to 700% can be found with fields of about 6 T at room temperature. We show that this striking behavior is due to the fact that the magnetic field radically changes the nature of the NFRHT. The field not only affects the electromagnetic surface waves (both plasmons and phonon polaritons) that normally dominate the near-field radiation in doped semiconductors, but it also induces hyperbolic modes that progressively dominate the heat transfer as the field increases. In particular, we show that when the field is perpendicular to the plates, the semiconductors become ideal hyperbolic near-field emitters. More importantly, by changing the magnetic field, the system can be continuously tuned from a situation where the surface waves dominate the heat transfer to a situation where hyperbolic modes completely govern the near-field thermal radiation. We show that this high tunability can be achieved with accessible magnetic fields and very common materials like n-doped InSb or Si. Our study paves the way for an active control of NFRHT and it opens the possibility to study unique hyperbolic thermal emitters without the need to resort to complicated metamaterials.Comment: 21 pages, 10 figure

    A chiral route to spontaneous entanglement generation

    Full text link
    We study the generation of spontaneous entanglement between two qubits chirally coupled to a waveguide. The maximum achievable concurrence is demonstrated to increase by a factor of 4/e1.54/e \sim 1.5 as compared to the non-chiral coupling situation. The proposed entanglement scheme is shown to be robust against variation of the qubit properties such as detuning and separation, which are critical in the non-chiral case. This result relaxes the restrictive requirements of the non-chiral situation, paving the way towards a realistic implementation. Our results demonstrate the potential of chiral waveguides for quantum entanglement protocols.Comment: 5 pages + 1 page supplemental, 4 figure

    Many-molecule reaction triggered by a single photon in polaritonic chemistry

    Full text link
    The second law of photochemistry states that, in most cases, no more than one molecule is activated for an excited-state reaction for each photon absorbed by a collection of molecules. In this Letter, we demonstrate that it is possible to trigger a many-molecule reaction using only one photon by strongly coupling the molecular ensemble to a confined light mode. The collective nature of the resulting hybrid states of the system (the so-called polaritons) leads to the formation of a polaritonic "supermolecule" involving the degrees of freedom of all molecules, opening a reaction path on which all involved molecules undergo a chemical transformation. We theoretically investigate the system conditions for this effect to take place and be enhanced.This work has been funded by the European Research Council under Grants No. ERC-2011-AdG-290981 and No. ERC- 2016-STG-714870, by the European Union Seventh Framework Programme under Grant No. FP7-PEOPLE- 2013-CIG-618229, and the Spanish MINECO under Contract No. MAT2014-53432-C5-5-R and the “María de Maeztu” program for Units of Excellence in R&D (MDM-2014-0377)

    Harvesting Excitons Through Plasmonic Strong Coupling

    Full text link
    Exciton harvesting is demonstrated in an ensemble of quantum emitters coupled to localized surface plasmons. When the interaction between emitters and the dipole mode of a metallic nanosphere reaches the strong coupling regime, the exciton conductance is greatly increased. The spatial map of the conductance matches the plasmon field intensity profile, which indicates that transport properties can be tuned by adequately tailoring the field of the plasmonic resonance. Under strong coupling, we find that pure dephasing can have detrimental or beneficial effects on the conductance, depending on the effective number of participating emitters. Finally, we show that the exciton transport in the strong coupling regime occurs on an ultrafast timescale given by the inverse Rabi splitting (10 \sim10~fs), orders of magnitude faster than transport through direct hopping between the emitters.Comment: 5 pages, 3 figure

    Polaritonic Chemistry with organic molecules

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Photonics, copyright © 2017 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/acsphotonics.7b00680We present an overview of the general concepts of polaritonic chemistry with organic molecules, i.e., the manipulation of chemical structure that can be achieved through strong coupling between confined light modes and organic molecules. Strong coupling and the associated formation of polaritons, hybrid light-matter excitations, lead to energy shifts in such systems that can amount to a large fraction of the uncoupled transition energy. This has recently been shown to significantly alter the chemical structure of the coupled molecules, which opens the possibility to manipulate and control reactions. We discuss the current state of theory for describing these changes and present several applications, with a particular focus on the collective effects observed when many molecules are involved in strong couplingThis work has been funded by the European Research Council under grant agreements ERC-2011-AdG-290981 and ERC-2016-STG- 714870, by the European Union Seventh Frame-work Programme under grant agreement FP7-PEOPLE-2013-CIG-618229, and the Spanish MINECO under contractMAT2014-53432-C5-5-R and the“María de Maeztu”programfor Units of Excellence in R&D (MDM-2014-0377)
    corecore