18,176 research outputs found

    Discovery of a deep Seyfert-2 galaxy at z = 0.222 behind NGC 300

    Get PDF
    We report on the unveiling of the nature of the unidentified X-ray source 3XMM J005450.3-373849 as a Seyfert-2 galaxy located behind the spiral galaxy NGC 300 using Hubble Space Telescope data, new spectroscopic Gemini observations and available XMM-Newton and Chandra data. We show that the X-ray source is positionally coincident with an extended optical source, composed by a marginally resolved nucleus/bulge, surrounded by an elliptical disc-like feature and two symmetrical outer rings. The optical spectrum is typical of a Seyfert-2 galaxy redshifted to z=0.222 +/- 0.001, which confirms that the source is not physically related to NGC 300. At this redshift the source would be located at 909+/-4 Mpc (comoving distance in the standard model). The X-ray spectra of the source are well-fitted by an absorbed power-law model. By tying NHN_\mathrm{H} between the six available spectra, we found a variable index Γ\Gamma running from ~2 in 2000-2001 years, to 1.4-1.6 in the 2005-2014 period. Alternatively, by tying Γ\Gamma, we found variable absorption columns of N_H ~ 0.34 x 10−2210^{-22} cm−2^{-2} in 2000-2001 years, and 0.54-0.75 x 10−2210^{-22} cm−2^{-2} in the 2005-2014 period. Although we cannot distinguish between an spectral or absorption origin, from the derived unabsorbed X-ray fluxes, we are able to assure the presence of long-term X-ray variability. Furthermore, the unabsorbed X-ray luminosities of 0.8-2 x 1043^{43} erg s−1^{-1} derived in the X-ray band are in agreement with a weakly obscured Seyfert-2 AGN at z≈0.22z \approx 0.22.Comment: MNRAS, accepte

    Thermalization and Cooling of Plasmon-Exciton Polaritons: Towards Quantum Condensation

    Get PDF
    We present indications of thermalization and cooling of quasi-particles, a precursor for quantum condensation, in a plasmonic nanoparticle array. We investigate a periodic array of metallic nanorods covered by a polymer layer doped with an organic dye at room temperature. Surface lattice resonances of the array---hybridized plasmonic/photonic modes---couple strongly to excitons in the dye, and bosonic quasi-particles which we call plasmon-exciton-polaritons (PEPs) are formed. By increasing the PEP density through optical pumping, we observe thermalization and cooling of the strongly coupled PEP band in the light emission dispersion diagram. For increased pumping, we observe saturation of the strong coupling and emission in a new weakly coupled band, which again shows signatures of thermalization and cooling.Comment: 8 pages, 5 figures including supplemental material. The newest version includes new measurements and corrections to the interpretation of the result

    Characterization of slow and fast phase nystagmus

    Get PDF
    A current literature review of the analog and digital process of vestibular and optical kinetic nystagmus reveals little agreement in the methods used by various labs. The strategies for detection of saccade (fast phase velocity component of nystagmus) vary between labs, and most of the process have not been evaluated and validated with a standard database. A survey was made of major vestibular labs in the U.S. that perform computer analyses of vestibular and optokinetic reflexes to stimuli, and a baseline was established from which to standardize data acquisition and analysis programs. The concept of an Error Index was employed as the criterium for evaluating the performance of the vestibular analysis software programs. The performance criterium is based on the detection of saccades and is the average of the percentages of missed detections and false detections. Evaluation of the programs produced results for lateral gaze with saccadic amplitude of one, two, three, five, and ten degrees with various signal-to-noise ratios. In addition, results were obtained for sinusoidal pursuit of 0.05, 0.10, and 0.50 Hz with saccades from one to ten degrees at various signal-to-noise ratios. Selection of the best program was made from the performance in the lateral gaze with three degrees of saccadic amplitude and in the 0.10 Hz sinusoid with three degrees of saccadic amplitude

    TREX-DM: a low background Micromegas-based TPC for low mass WIMP detection

    Get PDF
    Dark Matter experiments are recently focusing their detection techniques in low-mass WIMPs, which requires the use of light elements and low energy threshold. In this context, we present the TREX-DM experiment, a low background Micromegas-based TPC for low-mass WIMP detection. Its main goal is the operation of an active detection mass ∼\sim0.300 kg, with an energy threshold below 0.4 keVee and fully built with previously selected radiopure materials. This article describes the actual setup, the first results of the comissioning in Ar+2\%iC4_4H10_{10} at 1.2 bar and the future updates for a possible physics run at the Canfranc Underground Laboratory in 2016. A first background model is also presented, based on Geant4 simulations and a muon/electron discrimination method. In a conservative scenario, TREX-DM could be sensitive to DAMA/LIBRA and other hints of positive WIMPs signals, with some space for improvement with a neutron/electron discrimination method or the use of other light gases.Comment: Proceedings of the 7th Symposium on Large TPCs for Low-Energy Rare Event Detectio

    Star Formation Under the Outflow: The Discovery of a Non-Thermal Jet from OMC-2 FIR 3 and its Relationship to the Deeply Embedded FIR 4 Protostar

    Get PDF
    We carried out multiwavelength (0.7-5 cm), multiepoch (1994-2015) Very Large Array (VLA) observations toward the region enclosing the bright far-IR sources FIR 3 (HOPS 370) and FIR 4 (HOPS 108) in OMC-2. We report the detection of 10 radio sources, seven of them identified as young stellar objects. We image a well-collimated radio jet with a thermal free-free core (VLA 11) associated with the Class I intermediate-mass protostar HOPS 370. The jet presents several knots (VLA 12N, 12C, 12S) of non-thermal radio emission (likely synchrotron from shock-accelerated relativistic electrons) at distances of ~7,500-12,500 au from the protostar, in a region where other shock tracers have been previously identified. These knots are moving away from the HOPS 370 protostar at ~ 100 km/s. The Class 0 protostar HOPS 108, which itself is detected as an independent, kinematically decoupled radio source, falls in the path of these non-thermal radio knots. These results favor the previously proposed scenario where the formation of HOPS 108 has been triggered by the impact of the HOPS 370 outflow with a dense clump. However, HOPS 108 presents a large proper motion velocity of ~ 30 km/s, similar to that of other runaway stars in Orion, whose origin would be puzzling within this scenario. Alternatively, an apparent proper motion could result because of changes in the position of the centroid of the source due to blending with nearby extended emission, variations in the source shape, and /or opacity effects.Comment: 16 pages, 4 figures, accepted for publication in The Astrophysical Journa

    The Escherichia coli RnlA–RnlB toxin–antitoxin complex: production, characterization and crystallization

    Get PDF
    The Escherichia coli rnlAB operon encodes a toxin–antitoxin module that is involved in protection against infection by bacteriophage T4. The full-length RnlA–RnlB toxin–antitoxin complex as well as the toxin RnlA were purified to homogeneity and crystallized. When the affinity tag is placed on RnlA, RnlB is largely lost during purification and the resulting crystals exclusively comprise RnlA. A homogeneous preparation of RnlA–RnlB containing stoichiometric amounts of both proteins could only be obtained using a His tag placed C-terminal to RnlB. Native mass spectrometry and SAXS indicate a 1:1 stoichiometry for this RnlA–RnlB complex. Crystals of the RnlA–RnlB complex belonged to space group C2, with unit-cell parameters a = 243.32, b = 133.58, c = 55.64 Å, β = 95.11°, and diffracted to 2.6 Å resolution. The presence of both proteins in the crystals was confirmed and the asymmetric unit is likely to contain a heterotetramer with RnlA2:RnlB2 stoichiometry

    Improving the activity in hydrodechlorination of Pd/C catalysts by nitrogen doping of activated carbon supports

    Full text link
    Aqueous phase 4-chlorophenol hydrodechlorination reaction was used to study the effect of N-doping of activated carbon support on the catalytic activity of Pd catalysts. Activated carbon was doped using pyridine and 1,10-phenantroline, reaching nitrogen contents of 0.42-1.22 and 1.35-4.19 % (w), respectively. All catalysts (0.75 % Pd w, carbon basis) showed relatively large Pd nanoparticles (35-55nm), but they exhibited fast and complete 4-chlorophenol disappearance in batch experiments. In runs at 30°C 4-chlorophenol disappearance was mainly ascribed to hydrodechlorination, although N-doping of the support also increased adsorption. Catalysts with supports doped with pyridine yielded higher 4-chlorophenol disappearance rate in spite of lower bulk nitrogen content, however they showed higher concentration of nitrogen species at the external surface and lower loss of surface area during the doping. 4-chlorophenol disappearance rate was boosted at 60°C, with minor differences between catalysts with undoped and N-doped supports, but generation of cyclohexanone was only observed for the ones with doped support. Phenol generation simultaneous to 4-chlorophenol disappearance was observed with all the catalysts. However, subsequent hydrogenation to cyclohexanone ocurred only with the catalysts supported on N-doped activated carbonThe authors greatly appreciate the financial support of this research from the Spanish Ministry of Economy and Competitiveness through the project CTQ2012-3282
    • …
    corecore