2,396 research outputs found
Stabilization of metal and metalloids from contaminated soils using magnesia-based tundish deskulling waste from continuous steel casting
This study presents a groundbreaking exploration into the potential use of refractory tundish deskulling waste (TUN), a magnesium oxide-based by-product from continuous steel casting, as a stabilizing agent for remediating metal and metalloids contaminated soils. Up-flow column horizontal percolation tests were conducted to measure the concentrations of metals and metalloids, pH, and electrical conductivity (EC) in the leachates of two different combinations of contaminated soil and stabilizer (95-5 wt% and 90-10 wt%). The effectiveness of TUN as a soil-stabilizing agent for contaminated soils with metals and metalloids was evaluated by comparing its leachates with those obtained from a sample of a well-established low-grade magnesium oxide (LG-MgO) by-product, which underwent the same testing procedure. The findings revealed a significant correlation between the mobility of the examined metals and metalloids, and the water-soluble or acid phase of the contaminated soil, primarily governed by precipitation-solution reactions. While the stabilizing impact on non-pH-dependent metals, particularly redox-sensitive oxyanions, was less pronounced, both MgO-based stabilizers exhibited a favourable influence on soil pH-dependent metals and metalloids. They achieved this by establishing an optimal pH range of approximately 9.0-10.5, wherein the solubility of metal (hydr)oxides is minimized. Notably, metals like Zn and Cu, which have high leaching potential, experienced a remarkable reduction in leaching - Zn by over 99% and Cu by around 97% - regardless of the stabilizer content. In a broader context, this research champions the principles of the circular economy by offering a technical remedy for treating soils contaminated with pH-dependent metals and metalloids. The proposed solution harnesses industrial waste - currently relegated to landfills - as a resource, aligning with sustainable practices and environmental responsibility
The strong coupling constant at small momentum as an instanton detector
We present a study of at small p computed from the lattice.
It shows a dramatic law which can be understood within an
instanton liquid model. In this framework the prefactor gives a direct measure
of the instanton density in thermalised configurations. A preliminary result
for this density is 5.27(4) fm^{-4}.Comment: 12 pages, 4 figure
Instantons and Condensate
We argue that the is similar to .Comment: 6 pages, 1 fig., 1 tab., RevTeX to be use
Identification of circulating miRNA profiles that distinguish malignant pleural mesothelioma from lung adenocarcinoma
Accurate diagnosis of malignant pleura mesothelioma (MPM) is challenging. Differential diagnosis of MPM versus lung adenocarcinoma (AD) is particularly difficult, yet clinically important since the two neoplasias call for different treatment approaches. Circulating miRNA-profiling to identify miRNAs that can be used to distinguish MPM from AD has not been reported. We conducted a wide screening study of miRNA profiles in serum pools of MPM patients (N = 11), AD patients (N = 36), and healthy subjects (N = 45) to identify non-invasive biomarkers for differential diagnosis of MPM and AD, using deep sequencing. Sequencing
detected up to 300 known miRNAs and up to 25 novel miRNAs species in the serum samples. Among known miRNAs, 7 were upregulated in MPM and 12 were upregulated in AD compared to healthy controls. Of these, eight were distinctive for AD and three were unique for MPM. Direct comparison of the miRNA profiles for MPM and AD revealed differences in miRNA levels that could be useful for differential diagnosis. No differentially expressed novel miRNAs were found. Further bioinformatics analysis indicated that three upregulated miRNAs in MPM are associated with the p38 pathway. There are unique alterations in serum miRNAs in MPM and AD compared to healthy controls, as well as differences between MPM and AD profiles. Differing miRNA levels between MPM and AD may be useful for differential diagnosis. A potential association to p38 pathway of three upregulated miRNAs in MPM was revealed
Comparison of performances between risk scores for predicting mortality at 30 days in patients with community acquired pneumonia
Background: Risk scores facilitate the assessment of mortality risk in patients with community-acquired pneumonia (CAP). Despite their utilities, there is a scarcity of evidence comparing the various RS simultaneously. This study aims to evaluate and compare multiple risk scores reported in the literature for predicting 30-day mortality in adult patients with CAP. Methods: A retrospective cohort study on patients diagnosed with CAP was conducted across two hospitals in Colombia. The areas under receiver operating characteristic curves (ROC-curves) were calculated for the outcome of survival or death at 30 days using the scores obtained for each of the analyzed questionnaires. Results: A total of 7454 potentially eligible patients were included, with 4350 in the final analysis, of whom 15.2% (662/4350) died within 30 days. The average age was 65.4 years (SD: 21.31), and 59.5% (2563/4350) were male. Chronic kidney disease was 3.7% (9.2% vs. 5.5%; p < 0.001) (OR: 1.85) higher in subjects who died compared to those who survived. Among the patients who died, 33.2% (220/662) presented septic shock compared to 7.3% (271/3688) of the patients who survived (p < 0.001). The best performances at 30 days were shown by the following scores: PSI, SMART-COP and CURB 65 scores with the areas under ROC-curves of 0.83 (95% CI: 0.8–0.85), 0.75 (95% CI: 0.66–0.83), and 0.73 (95% CI: 0.71–0.76), respectively. The RS with the lowest performance was SIRS with the area under ROC-curve of 0.53 (95% CI: 0.51–0.56). Conclusion: The PSI, SMART-COP and CURB 65, demonstrated the best diagnostic performances for predicting 30-day mortality in patients diagnosed with CAP. The burden of comorbidities and complications associated with CAP was higher in patients who died
Hydrostatic Pressure Sensing with High Birefringence Photonic Crystal Fibers
The effect of hydrostatic pressure on the waveguiding properties of high birefringence photonic crystal fibers (HiBi PCF) is evaluated both numerically and experimentally. A fiber design presenting form birefringence induced by two enlarged holes in the innermost ring defining the fiber core is investigated. Numerical results show that modal sensitivity to the applied pressure depends on the diameters of the holes, and can be tailored by independently varying the sizes of the large or small holes. Numerical and experimental results are compared showing excellent agreement. A hydrostatic pressure sensor is proposed and demonstrated using an in-fiber modal interferometer where the two orthogonally polarized modes of a HiBi PCF generate fringes over the optical spectrum of a broad band source. From the analysis of experimental results, it is concluded that, in principle, an operating limit of 92 MPa in pressure could be achieved with 0.0003% of full scale resolution
A data compression and optimal galaxy weights scheme for Dark Energy Spectroscopic Instrument and weak lensing data sets
Combining different observational probes, such as galaxy clustering and weak lensing, is a promising technique for unveiling the physics of the Universe with upcoming dark energy experiments. The galaxy redshift sample from the Dark Energy Spectroscopic Instrument (DESI) will have a significant overlap with major ongoing imaging surveys specifically designed for weak lensing measurements: The Kilo-Degree Survey (KiDS), the Dark Energy Survey (DES), and the Hyper Suprime-Cam (HSC) survey. In this work, we analyse simulated redshift and lensing catalogues to establish a new strategy for combining high-quality cosmological imaging and spectroscopic data, in view of the first-year data assembly analysis of DESI. In a test case fitting for a reduced parameter set, we employ an optimal data compression scheme able to identify those aspects of the data that are most sensitive to cosmological information and amplify them with respect to other aspects of the data. We find this optimal compression approach is able to preserve all the information related to the growth of structures
A data compression and optimal galaxy weights scheme for Dark Energy Spectroscopic Instrument and weak lensing datasets
Combining different observational probes, such as galaxy clustering and weak
lensing, is a promising technique for unveiling the physics of the Universe
with upcoming dark energy experiments. The galaxy redshift sample from the Dark
Energy Spectroscopic Instrument (DESI) will have a significant overlap with
major ongoing imaging surveys specifically designed for weak lensing
measurements: the Kilo-Degree Survey (KiDS), the Dark Energy Survey (DES) and
the Hyper Suprime-Cam (HSC) survey. In this work we analyse simulated redshift
and lensing catalogues to establish a new strategy for combining high-quality
cosmological imaging and spectroscopic data, in view of the first-year data
assembly analysis of DESI. In a test case fitting for a reduced parameter set,
we employ an optimal data compression scheme able to identify those aspects of
the data that are most sensitive to the cosmological information, and amplify
them with respect to other aspects of the data. We find this optimal
compression approach is able to preserve all the information related to the
growth of structure; we also extend this scheme to derive weights to be applied
to individual galaxies, and show that these produce near-optimal results.Comment: 14 pages, 12 Figures, DESI collaboration articl
- …