18,912 research outputs found

    Excited-state quantum phase transitions in a two-fluid Lipkin model

    Get PDF
    Background: Composed systems have became of great interest in the framework of the ground state quantum phase transitions (QPTs) and many of their properties have been studied in detail. However, in these systems the study of the so called excited-state quantum phase transitions (ESQPTs) have not received so much attention. Purpose: A quantum analysis of the ESQPTs in the two-fluid Lipkin model is presented in this work. The study is performed through the Hamiltonian diagonalization for selected values of the control parameters in order to cover the most interesting regions of the system phase diagram. [Method:] A Hamiltonian that resembles the consistent-Q Hamiltonian of the interacting boson model (IBM) is diagonalized for selected values of the parameters and properties such as the density of states, the Peres lattices, the nearest-neighbor spacing distribution, and the participation ratio are analyzed. Results: An overview of the spectrum of the two-fluid Lipkin model for selected positions in the phase diagram has been obtained. The location of the excited-state quantum phase transition can be easily singled out with the Peres lattice, with the nearest-neighbor spacing distribution, with Poincar\'e sections or with the participation ratio. Conclusions: This study completes the analysis of QPTs for the two-fluid Lipkin model, extending the previous study to excited states. The ESQPT signatures in composed systems behave in the same way as in single ones, although the evidences of their presence can be sometimes blurred. The Peres lattice turns out to be a convenient tool to look into the position of the ESQPT and to define the concept of phase in the excited states realm

    Calorons on the lattice - a new perspective

    Full text link
    We discuss the manifestation of instanton and monopole solutions on a periodic lattice at finite temperature and their relation to the infinite volume analytic caloron solutions with asymptotic non-trivial Polyakov loops. As a tool we use improved cooling and twisted boundary conditions. Typically we find 2Q lumps for topological charge Q. These lumps are BPS monopoles.Comment: Latex. 16 pages, 9 figure

    Improved superposition schemes for approximate multi-caloron configurations

    Full text link
    Two improved superposition schemes for the construction of approximate multi-caloron-anticaloron configurations, using exact single (anti)caloron gauge fields as underlying building blocks, are introduced in this paper. The first improvement deals with possible monopole-Dirac string interactions between different calorons with non-trivial holonomy. The second one, based on the ADHM formalism, improves the (anti-)selfduality in the case of small caloron separations. It conforms with Shuryak's well-known ratio-ansatz when applied to instantons. Both superposition techniques provide a higher degree of (anti-)selfduality than the widely used sum-ansatz, which simply adds the (anti)caloron vector potentials in an appropriate gauge. Furthermore, the improved configurations (when discretized onto a lattice) are characterized by a higher stability when they are exposed to lattice cooling techniques.Comment: New version accepted for publication in Nucl. Phys. B. Text partly shortened, changes in the introduction, new results added on the comparison with exact solution

    Hyperonic crystallization in hadronic matter

    Full text link
    Published in Hadrons, Nuclei and Applications, World Scientific, Singapore, Proc.of the Conference Bologna2000. Structure of the Nucleus at the Dawn of the Century, G. Bonsignori, M. Bruno, A. Ventura, D. Vretenar Editors, pag. 319.Comment: 4 pages, 2figure

    Recent results on self-dual configurations on the torus

    Get PDF
    We review the recent progress on our understanding of self-dual SU(N) Yang-Mills configurations on the torus.Comment: Latex 3 pages, 1 figure. Contribution to the Lat99 Proceeding

    Infinite boundary conditions for matrix product state calculations

    Get PDF
    We propose a formalism to study dynamical properties of a quantum many-body system in the thermodynamic limit by studying a finite system with infinite boundary conditions (IBC) where both finite size effects and boundary effects have been eliminated. For one-dimensional systems, infinite boundary conditions are obtained by attaching two boundary sites to a finite system, where each of these two sites effectively represents a semi-infinite extension of the system. One can then use standard finite-size matrix product state techniques to study a region of the system while avoiding many of the complications normally associated with finite-size calculations such as boundary Friedel oscillations. We illustrate the technique with an example of time evolution of a local perturbation applied to an infinite (translationally invariant) ground state, and use this to calculate the spectral function of the S=1 Heisenberg spin chain. This approach is more efficient and more accurate than conventional simulations based on finite-size matrix product state and density-matrix renormalization-group approaches.Comment: 10 page

    Dynamical windows for real-time evolution with matrix product states

    Get PDF
    We propose the use of a dynamical window to investigate the real-time evolution of quantum many-body systems in a one-dimensional lattice. In a recent paper [H. Phien et al, arxiv:????.????], we introduced infinite boundary conditions (IBC) in order to investigate real-time evolution of an infinite system under a local perturbation. This was accomplished by restricting the update of the tensors in the matrix product state to a finite window, with left and right boundaries held at fixed positions. Here we consider instead the use of a dynamical window, namely a window where the positions of left and right boundaries are allowed to change in time. In this way, all simulation efforts can be devoted to the space-time region of interest, which leads to a remarkable reduction in computational costs. For illustrative purposes, we consider two applications in the context of the spin-1 antiferromagnetic Heisenberg model in an infinite spin chain: one is an expanding window, with boundaries that are adjusted to capture the expansion in time of a local perturbation of the system; the other is a moving window of fixed size, where the position of the window follows the front of a propagating wave
    • …
    corecore