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Dynamical windows for real-time evolution with matrix product states
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We propose the use of a dynamical window to investigate the real-time evolution of quantum many-body
systems in a one-dimensional lattice. In a recent paper [Phien et al., Phys. Rev. B 86, 245107 (2012)], we
introduced infinite boundary conditions in order to investigate real-time evolution of an infinite system under
a local perturbation. This was accomplished by restricting the update of the tensors in the matrix product state
to a finite region known as a window, with left and right boundaries held at fixed positions. Here we consider
instead the use of a dynamical window, where the positions of left and right boundaries are allowed to change in
time. In this way, all computational efforts can be devoted to the space-time region of interest, which leads to a
remarkable reduction in simulation costs. For illustrative purposes, we consider two applications in the context
of the spin-1 antiferromagnetic Heisenberg model in an infinite spin chain: one is an expanding window, with
boundaries that are adjusted to capture the expansion in time of a local perturbation of the system; the other is a
moving window of fixed size, where the position of the window follows the front of a propagating wave.
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I. INTRODUCTION

Ever since the density-matrix renormalization group
method (DMRG) was invented in 1992 by White 1,2, it has
opened new trends for the numerical study of strong correlation
effects in one-dimensional quantum systems. By now, it is well
established as a powerful method in producing exact results
for ground state wave functions and expectation values of
one-dimensional (1D) quantum systems. In addition, DMRG
is not constrained to investigating static properties, but it has
been extended to study dynamical properties3–6 as well as
quantum systems at finite temperature.7,8

The connection was not immediately made that the wave
function produced by DMRG can be realized as a variational
calculation in the space of matrix product states (MPS).9–11

As it is easier, people usually prefer to implement the DMRG
in terms of MPS. Furthermore, together with MPS, tensor
network states have been attracting much interest from com-
putational physicists. Algorithms have been developed based
on MPS to simulate both the static and dynamical properties of
1D quantum systems. One of the most successful algorithms
in MPS formalism is the time-evolving block decimation
(TEBD) algorithm,12,13 which has an equivalent DMRG
formulation.14,15 This algorithm can be used for ground state
calculations, although it is not as efficient as variational
minimization algorithms such as DMRG. However TEBD
comes into its own for real-time evolution. More recently, a
new algorithm, called the time-dependent variational principle
(TDVP),16,17 has also been introduced to study both the real-
and imaginary-time dynamics for infinite one-dimensional
quantum lattices.

There are many interesting problems that involve the
dynamics of a small section embedded in an infinite lattice.
For example, consider the real-time evolution of an infinite
quantum spin chain, initially in the ground state, after one site
in the middle of the chain has been locally perturbed by some
spin excitation, e.g., a local S+ operator. Before applying S+,
the state is translationally invariant and can be represented by
an infinite MPS (iMPS). After applying S+, the ground state

becomes a superposition of excited states. Therefore, the iMPS
can no longer be represented in a translationally invariant form.
This is a huge hurdle to investigate real-time evolution of the
system in the thermodynamic limit, as in principle one must
use an infinite set of different tensors in the iMPS to describe
the wave function of the state. This makes the simulation an
impossible task. However, because the perturbation is local,
one can avoid this difficulty and can still understand the
dynamical properties of a system in a thermodynamic limit, as
long as the range of effect is finite (or approximately so). The
conventional way to solve this problem is to choose a finite
lattice that is large enough that the boundaries have a minimal
effect on the calculation.14,18 As the wave function evolves
in time, this local perturbation represented by a wave packet
will spread throughout the system at the group velocity (for
ballistic transport) or slowly spread out through the system
(in the diffusive case). The system therefore needs to be large
enough that the perturbation can evolve for the required time
without reaching the boundary. In practice the size will need
to be even larger, because the open boundary conditions, used
for technical reasons in finite system calculations, give rise to
Friedel oscillations that will affect the wave function even well
away from the boundary.

Recently, there have been other novel algorithms that
can allow to directly study the dynamics of the nontransla-
tionally invariant systems in the thermodynamic limit while
avoiding the finite-size effects. For instance, the light cone
renormalization group (LCRG)19 employs the Lieb-Robinson
bound20 to effectively evolve only a finite region (a light cone)
of the lattice. Although this algorithm can be employed to
investigate the dynamics of the infinite system without relying
on translational invariance in using MPS, it is not efficient for
a long-time evolution as the size of the light cone increases
very quickly. Another technique, proposed by Bañuls et al.,21

focuses on the method of contracting tensor network during
the time evolution. More specifically, by folding the network
in the time direction before contracting it transversely, this new
technique can be used to study the dynamics of infinite systems
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with local or global quenches. This method can achieve a
longer-time evolution than competing techniques, however, it
is quite difficult to apply when the initial state is not a product
state.

Alternatively, in our previous paper,22 we have proposed
a method to study the time evolution of the system in the
thermodynamic limit. We have shown that the computational
cost can be substantially improved by using a much smaller
finite system with infinite boundary conditions (IBCs). This
has two advantages. First, there is no hard boundary in the
system, so there are no Friedel oscillations, and away from
the perturbation the system is asymptotically translationally
invariant. Second, since the “boundaries” of the finite system
represent an effective semi-infinite chain rather than a hard
wall, there is no problem in allowing the perturbation to
propagate beyond the finite region as long as the wave
function does not move too far outside the effective Hilbert
space of the semi-infinite chain. These are great advantages
over traditional finite-size calculations. To achieve this, we
divide the whole spin chain into three parts where the middle
part, the so-called window, usually contains the perturbation,
and the other two parts, on the left and right of the window,
are not affected by the perturbation. The boundaries of the
window are represented by an effective Hilbert space for the
wave function on a semi-infinite chain.

In this paper, we further improve the computational effi-
ciency of the IBC technique by focusing on how the wave
front propagates in time. Higher efficiencies can be obtained
by introducing dynamical window techniques, namely, ex-
panding and moving the window throughout the calculation.
Specifically, we will keep track of the wave front and decide to
expand or move the window such that the physically relevant
section of the system is well represented. An important point
is that in our scheme the section of the system outside of the
window, represented by an effective Hilbert space, can evolve
as well so that the window size can be quite small, containing
only the region of interest, without affecting the accuracy too
much. Numerical results are presented for the time evolution
of a local perturbation in the spin-1 antiferromagnetic (AFM)
Heisenberg model.

II. INFINITE BOUNDARY CONDITIONS
AND EFFECTIVE HAMILTONIAN

Before introducing the dynamical window techniques, it
is important to review the definition of IBC and the effective
Hamiltonian calculation. In the following, we summarize these
definitions. For more detail one can refer to our previous
paper.22

A. Infinite boundary conditions

Let us consider an infinite spin chain where the ground state
is represented by an infinite translationally invariant matrix
product state,

|�〉 =
∑
{si }

· · · λ�si λ�si+1 · · · |s〉, (1)

where |s〉 = | . . . si ,si+1, . . .〉 is the orthonormal basis of
Hilbert space H ∈ C⊗∞

d of the system (d is the dimension

of local Hilbert space at each lattice site). Here we assume
for simplicity that the iMPS is translationally invariant with a
one-site unit cell and therefore can be represented by a tensor
� of rank three and a diagonal matrix λ. This iMPS can be
always written in the mixed canonical form as follows:

|�〉 =
∑

s

· · ·Asi−1Asi λBsi+1Bsi+2 · · · |s〉, (2)

where tensors A = λ� and B = �λ satisfy the canonical form
constraints ∑

si

Asi †Asi =
∑
si

�si †ρR�si = I, (3)

∑
si

Bsi Bsi † =
∑
si

�si ρL�si † = I, (4)

I is the identity matrix, and ρL and ρR are the left and
right reduced density matrices, respectively. Note that in this
representation ρL = ρR = λ2.

We now decompose the whole chain into three sections:
the window containing N sites, in the middle of the chain, and
two semi-infinite chains attached to each end of the window.
By introducing two boundary sites representing left and right
semi-infinite chains, the infinite system can be defined as a
finite system with N + 2 sites. These two boundary sites are
also called the infinite boundary tensors of the finite spin chain.
Then, the state of the system Eq. (2) can be written in the finite
MPS form as follows:

|�̃〉 =
∑

α,{si },β
LαA

s1
1 · · ·Asi

i λB
si+1
i+1 · · ·BsN

N Rβ |α,s̃,β〉, (5)

where |s̃〉 = |s1,s2, . . . ,sN 〉 is the orthonormal basis of Hilbert
space of the window and |α〉 and |β〉 are orthonormal bases
of effective Hilbert spaces of the left and right boundary
sites with dimension χ , respectively. Note that χ is also
the bond dimension of the ground state of the system. Two
boundary tensors Lα and Rβ are introduced to represent
the two boundary sites of the finite MPS with dimensions
1 × χ and χ × 1, respectively. In practice we do not actually
need the Lα and Rβ tensors as these are identity elements,
Lα

i = δαi and R
β

j = δβj . However, we include them in the
MPS representation so that one can understand how the infinite
boundaries are incorporated in such a way that an iMPS can
be effectively represented by a finite MPS. At this point, we
no longer require that the MPS is translationally invariant, and
the tensors Ai and Bj may all be different, for example, to
represent a state that has been locally perturbed within the
window.

B. Effective Hamiltonian calculation

After decomposing the entire chain into three parts, the full
Hamiltonian of the system can be written as a sum of five
components as

H = HL + HLW + HW + HWR + HR, (6)

where we have denoted the terms as follows: HL and HR are
the Hamiltonians of the left and right semi-infinite chains,
respectively; HW is the Hamiltonian of the N -site window;
and finally the terms HLW and HWR represent the interactions
between the window and the left and right semi-infinite chains,
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respectively. After shrinking the representation of the infinite
system to the finite system, we can introduce an effective
Hamiltonian as follows:

H̃ = H̃L + H̃LW + HW + H̃WR + H̃R. (7)

Similar to the expression in Eq. (6), this effective Hamiltonian
also contains five components. The Hamiltonian for the
window HW remains the same. Meanwhile, the other terms
change and can be distinguished by the tilde symbol. As
the effective Hamiltonian depends on the value of the bond
dimension χ , it can only represent the system approximately.
The χ -dimensional truncated Hilbert space obviously contains
the original MPS approximation of the ground state itself,
however, as the system evolves in time away from this state,
the state of the system outside the window is constrained to lie
within this truncated space, whereas the Hilbert space within
the window is free to evolve. In this sense, the moving window
technique can be seen as a combination of the efficient but
inaccurate method of Cazalilla and Marston6 for time evolution
within a fixed Hilbert space, and TEBD/adaptive time DMRG.

In order to obtain the effective Hamiltonian of the system,
one needs to find the left and right dominant eigenvectors,
denoted as { �EL, �ER}, of the transfer matrices defined as

TL =
∑
ss ′

〈s|W |s ′〉As ′†As (8)

and

TR =
∑
ss ′

〈s|W |s ′〉BsBs ′†, (9)

respectively. In the above equations, we have denoted W as
the matrix product operator of the Hamiltonian. Note that
these dominant eigenvectors contain the components of an
effective Hamiltonian and they can be understood as the block
operators in the context of the DMRG algorithm. In our
previous paper,22 we describe in detail the method to obtain the
effective Hamiltonian of the spin-1 AFM Heisenberg model.
One can also refer to the work of Michel and McCulloch23 for
a general method to compute the effective Hamiltonian and a
wide class of related operators.

III. DYNAMICAL WINDOW TECHNIQUES

Let us consider an infinite spin chain which has undergone
a local perturbation. By applying the IBC, we can use a finite
MPS to represent the state of the system as in Eq. (5).

The window now contains the perturbation and is allowed
to dynamically change in either its size or position to follow the
wave front. Dynamically changing the size or position of the
window involves two basic steps, contraction of the window
and expansion of the window. We now describe the technical
steps involved in each case.

A. Window expansion

Expanding the window involves incorporating more de-
grees of freedom into the variational wave function, and this
is an operation that one will typically want to do in order to
follow the propagation of a perturbation as it travels through the
lattice. This is achieved by incorporating some sites from the

FIG. 1. (Color online) Schematic representation of window
expansion technique for the N = 4 window. On each side of the
window, there are two sites added to expand the window.

translationally invariant semi-infinite chain into the window.
The window can be expanded on the left- and the right-hand
side separately. For example, in order to follow the wave front
of a symmetrically expanding local perturbation, we use the
scheme shown in Fig. 1 with N = 4. The basic operation on
the MPS in Eq. (5) becomes, in the case of adding two one-site
unit cells to both the left and right edges of the window,

|�̃〉 =
∑

α,{si },β
LαA

s−1
−1A

s0
0 A

s1
1 · · · λ · · ·

×B
sN

N BsN+1BsN+2Rβ |α,s̃′,β〉, (10)

where the Hilbert space of the window is now expanded
in the basis of |s̃′〉 = |s−1,s0,s1,s2, . . . ,sN ,sN+1,sN+2〉. The
initial values of the left tensors {A−1,A0} and right tensors
{BN+1,BN+2} are simply given by the translationally invariant
matrices A and B of the ground state Eq. (2), respectively. Note
that the Hilbert spaces |α〉 and |β〉 at the left and right edges
of the window are unchanged. Therefore the block operators
acting on this space are also unchanged, although care needs to
be taken so that the energy of the system is correctly taken into
account. In calculating the effective Hamiltonian,22 the energy
per site of the infinite system appears as a separate term which
is easily removed. Thus, in order to keep the total energy of
the system the same constant as the window is expanded, it is
convenient to subtract this energy off the Hamiltonian for the
finite window as well.

B. Window contraction

The second operation that we can perform on the window
is to contract the size of it, by absorbing some sites of the
window into the boundary tensor. To achieve this, we contract
over those sites to obtain a new set of block operators. Then, the
effective Hamiltonian corresponding to the new set of block
operators will now describe a semi-infinite chain plus some
number of additional (not translationally invariant) sites. This
procedure is implemented by following the scheme shown
graphically in Fig. 2, where two sites from the window are
absorbed to the boundary tensor. In particular, the right block
operators after contracting two sites into the boundary tensor
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FIG. 2. (Color online) Diagrammatic illustration of how to update
the block operators in the window contraction scheme. (a) The right
update is performed when two sites of the window are contracted to
the right boundary tensor. (b) The left update is performed when two
sites of the window are contracted to the left boundary tensor.

are defined as

E′
R =

∑
sN ,sN−1

〈sN |W |sN 〉〈sN−1|W |sN−1〉

×BsN−1BsN ERBsN †BsN−1†, (11)

where the tensors BsN and BsN−1 need to satisfy the right
canonical form constraint in Eq. (4). Similarly, when two sites
from the window are contracted to the left boundary tensor,
the left block operators are determined by

E′
L =

∑
s1,s2

〈s1|W |s1〉〈s2|W |s2〉 × As2†As1†ELAs1As2 . (12)

The tensors As1 and As2 must satisfy the left canonical form
constraint in Eq. (3).

Again, one needs to take care that the total energy of the
system is unchanged in this procedure, which is easily effected
by subtracting a constant equal to the ground state energy per
site to the Hamiltonian of the window.

C. Moving window criteria

The choice of when to move or expand the window is
very important, because if the window is too large, then the
calculation is less efficient, however, if the window is too small
and some relevant section of the perturbation is too far outside
the window, then the calculation will lose accuracy. There
are many ways to formalize a criterion for when to move the
window, e.g., we can look at how the wave front propagates in
time and determine the maximum velocity of the excitations.
However, it is much more convenient to use another criterion
that relies on the change of the initial tensors Lα ,As1 and the
matrix λ at the edge of the window.

Let us assume that at time t = 0 the MPS is initially
described by Eq. (5) with i = 1 to locate the λ matrix at the
edge of the window, allowing us to define Y

α,s1
0 = LαAs1λ and

the reduced density matrix ρR = λ2. Later on, at time t the
tensors A,B,λ within the window will have evolved so that we
have a new Y

α,s1
t = LαA

′s1λ′, and the reduced density matrix
is also changed to ρR ′ = λ′2. Note that the tensor Lα remains
unchanged in time evolution from t0 to t as the window has
the same infinite boundary on its left side. We can compare
the difference between Yt0 and Yt by measuring how much the

reduced density matrix has changed. The change in reduced
density matrix is quantified by the fidelity F (ρR ′

,ρR) defined
as √

F (ρR ′
,ρR) = tr

√√
ρRρR ′√

ρR = tr(S), (13)

where S is the diagonal matrix obtained from the singular
value decomposition of

∑
α,s1

Y
α,s1
t

†
Y

α,s1
0 = USV †. We define

a threshold such that if the fidelity is less than that threshold,
then the tensor closest to the boundary has changed sufficiently
that the window needs to be expanded or moved to keep track
of the wave front.

IV. NUMERICAL CALCULATIONS

In this section, we present numerical calculations for
two dynamical window schemes: an expanding window in
which the size of the window is grown to encompass the
symmetrically expanding wave fronts, and a moving window
in which the dynamical window is chosen to be much smaller
to test the case that one is interested mainly in the dynamics
of a small section of a larger system. In the latter case, a
significant amount of the dynamics will occur outside of the
window, so an important test of the method is to check that the
dynamics within the window remains accurately described.
For these calculations, we use the spin-1 AFM Heisenberg
model represented by the Hamiltonian

H =
∑

i

�Si · �Si+1 (14)

subjected to a local perturbation S+
0 applied at time t = 0 to the

ground state |ψ〉, which we denote |�〉 = S+
0 |ψ〉. We compute

some expectation values during the time evolution to compare
with the fixed window method. Specifically, we are interested
in observables such as local magnetization 〈�|Sz

x(t)|�〉 (x is
the position of the lattice site) and the unequal time two-point
correlator A(x,t) given by

A(x,t) = 〈ψ |S−
x (t)S+

0 (0)|ψ〉 = 〈ψ |S−
x (t)|�〉. (15)

From the unequal time two-point correlator one can extract the
spectral function easily by employing the Fourier transform as
follows:

S(q,ω) = − 1

π
Im

∫ ∞

−∞
dteiωt

∑
x

e−iqxG(x,t), (16)

where G(x,t) = −iA(x,t) is the Green’s function.
In our simulation, before applying the dynamical window

techniques, we obtain the ground state of the infinite chain
using the iTEBD algorithm.24 This ground state is represented
by a two-site translationally invariant MPS. By applying the
IBC we represent the system with a finite-size MPS |ψ〉 to
represent its ground state. Before evolving the system in time,
we choose one site in the middle of the chain as the origin
(x = 0) and perturb it by applying the spin-flip operator S+
on the state |ψ〉 to obtain the excited state |�(t = 0)〉. Note
that when expanding or contracting the window, the number
of sites added to or contracted from the window has to be
a multiple of the unit cell, and here the unit cell contains
two sites. Henceforth, a unit cell refers to two sites in this
paper. We have implemented the TEBD with a fourth-order
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FIG. 3. (Color online) Illustration of how the window is expanded
in time and space. The balls represent the lattice sites in the left figure:
blue and purple balls are inside and outside the window, respectively.
The black dotted lines in the right figure illustrate the wave front
which propagates in time and space inside the window. The window
is expanded both sides symmetrically as soon as the wave fronts hit
the boundaries.

Suzuki-Trotter decomposition25 with time step δt = 0.05 and
keeping the number of states χ = 200.

A. Expanding window

We start the time evolution of the system with a small
window size Ne in which the perturbation appears in the
middle at position Ne/2 sites in from the left boundary of
the window. The expanding window scheme is illustrated in
Fig. 3. When the wave fronts hit the boundaries, the window
moving criterion describe in Sec. III C above is met, and we
need to extend the window by adding some number of unit
cells to both sides of the window. Here we add one unit cell at
a time, however, in principle we can add an arbitrary number
of unit cells in a single expansion step. After adding the sites,
we evolve the system with the new window for some time
before the next expansion procedure is initiated.

Figure 4 shows our numerical calculation of 〈Sz(x,t)〉. It
also shows the result calculated with a fixed window of size
Nf = 240 for comparison (this is numerically exact for these
purposes). It can be seen that the results obtained from the
different methods are almost the same, although the size of
the starting window in the expanding case is much smaller
Ne = 8 and increases slowly in time. Nevertheless, the ex-
panding window calculation is much faster as the computation
time is essentially linear in the size of the window.

In order to see how different are the wave packets between
the expanding and fixed window methods, we plot the local
magnetization 〈Sz(xj ,t)〉 at different positions xj . The results
are shown in Fig. 5 for xj = {0,10,20,29}. We can see that
they match very well. To see the differences in detail, we
also plot absolute differences of 〈Sz(xj ,t)〉 between these two
methods in Fig. 6(a). Note that, although both methods are
implemented with the same time step, the Hamiltonian is
treated differently inside and outside the window, which means
that the Suzuki-Trotter error arising from the decomposition is
slightly different in the two methods, although it is of the same
magnitude. These differences saturate at an acceptably small
value ≈10−4 which is comparable to the Suzuki-Trotter error.
The threshold chosen for the fidelity also affects the accuracy.
It is clear that the larger the threshold we keep, the longer time
we evolve the system before expanding the window. However,
if the threshold is too big, then the wave front will move ahead
of the window and the calculation will lose accuracy. This is
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,t
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Expanding window
Fixed window

FIG. 4. (Color online) Comparison of a wave packet propagating
in time between different schemes: fixed and expanding window.
The red and blue lines represent the local magnetization 〈Sz(x,t)〉
inside and outside the window obtained from the expanding window
technique, respectively. The label on each line corresponds to the
time when the window is expanded by additional unit cells. The
initial window size is Ne = 8, and two unit cells are added at each
window edge to expand the window. The threshold 1 − √

F = 10−3

is chosen for expanding the window criterion.

shown in Fig. 6(b), where we used the threshold 0.1, which is
clearly leading to a loss of accuracy.

We also have tested that the expanding window technique
can reproduce the spectral function of the system very well and
is comparable with the result obtained from the fixed window
technique. By Fourier transforming both in time and space the

0 5 10 15 20 25 30

−0.2

0

0.2

0.4

t

S
z
(2

9,
t)

(d)

 

 

0 5 10 15 20 25 30

−0.2

0

0.2

0.4

t

S
z
(2

0,
t)

(c)

0 5 10 15 20 25 30

−0.2

0

0.2

0.4

0.6

t

S
z
(1

0,
t)

(b)

0 5 10 15 20 25 30

−0.2

0

0.2

0.4

0.6

t

S
z
(0

,t
)

(a)

Fixed window
Expanding window

FIG. 5. (Color online) Comparison of local magnetization at
specific positions xj using two different schemes, the fixed window
(red line) and expanding window (blue line). (a) xj = 0; (b) xj = 10;
(c) xj = 20; (d) xj = 29.
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FIG. 6. (Color online) Absolute difference in local magnetization
at positions xj between the fixed and expanding window schemes.
(a) Threshold 1 − √

F = 0.001. (b) Threshold 1 − √
F = 0.1.

Green’s function G(x,t) using Eqs. (15) and (16), we can get
a full spectrum of the system. Figure 7(a) shows the spectral
function of the system projected onto the plane of frequency
ω and momentum q. We can extract the dispersion relation
from it, which is plotted in Fig. 7(b) to compare with the result
obtained from the fixed window technique. The plot shows
that results obtained from the different methods are almost
indistinguishable. In addition, the absolute difference of the
Haldane gap computed by the two techniques is approximately
equal to 10−4.

B. Moving window

In the dynamical window technique it is possible to combine
both the expansion and contraction steps. The window is now
fixed in size and is shifted along the chain as soon as the wave
fronts hit the boundary. In principle, we can move this window
to either side of the chain. In Fig. 8, the initial window contains
N = 4 sites and starts moving from the right to the left of the
spin chain (the positive direction is chosen to the left). As a
result of moving the window, the wave front will cross over
the right boundary, but on the left side the wave front will not
propagate through the boundary. Therefore, all the dynamical
properties measured in the region colored blue and purple
should be reliable, but not for the black region, as the wave
function there is represented only by the boundary tensor and
hence is restricted to a χ -dimensional effective Hilbert space.

The advantage of this scheme is that it is very cheap in
computational cost as we just need to modify and update
the sites inside the window, which can be kept as small as
possible. To understand how it is implemented in terms of a
tensor network, we introduce the update scheme for MPS and
effective Hamiltonian before the window is shifted to a new
position. They are the two most important components in the
update scheme of the real-time evolution algorithm of the MPS
with IBC.

The procedure for updating the new window is described
in Fig. 9, where a unit cell is added or removed from the
window. When the moving window criterion is met, we need
to shift the window to the left by one unit cell. Note that

FIG. 7. (Color online) (a) The spectrum obtained from the
expanding window technique is projected onto the plane of frequency
ω and momentum q. (b) Comparison of the dispersion relations
between the fixed and expanding window techniques with window
sizes Nf = 60 and Ne = 8, respectively. The Haldane gap is �f ≈
0.4105 for the fixed window and is �e ≈ 0.4104 for the expanding
window.

the number of sites in the old window that are absorbed
into the right boundary is equal to the number of sites added
to the left edge of the window to keep the overall size of the
window constant. However, it is possible to arbitrarily enlarge
or contract the window throughout the calculation, in cases
where that is desirable.

In addition to updating the MPS tensors for the wave
function inside the window, we need to update the effective
Hamiltonian. In fact, as the window is translated to the left,
because the tensors that represent the semi-infinite strip to

FIG. 8. (Color online) Illustration of how the window is translated
in time and space. The balls represent the lattice sites in the left figure:
Blue balls are inside the window; purple and black balls are outside
on the left and the right of the window, respectively. The black dotted
lines in the right figure show the wave front propagating in time and
space inside the window. The window moves along the spin chain
axis as soon as the wave fronts hit the left boundary.
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FIG. 9. (Color online) Illustration of how to update the MPS when
moving the window to the left. One unit cell is added to the left edge
of the old window while a unit cell on the right edge of the old window
is absorbed into the right boundary tensor.

the left are translationally invariant, the effective Hamiltonian
and left block operators remain unchanged, while the right
effective Hamiltonian and block operators must be updated
to incorporate the changed sites of the window that are
now incorporated into the right boundary. This is done via
Eq. (11) with the graphical illustration in Fig. 2 to update the
components of the effective Hamiltonian and block operators.

60 40 20 0

t = 0

t = 1.75

t = 3.95

t = 6.15

t = 8.35

t = 10.5

t = 12.7

t = 15

t = 17.35

t = 19.8

t = 22.2

t = 24.45

x

S
z
(x

,t
)

 

 

Moving window
Moving window
Fixed window

FIG. 10. (Color online) Comparison of the wave packet propa-
gating in time for the fixed and moving window schemes. The black
lines correspond to the fixed window with size Nf = 240. The red
and blue lines correspond to the cases of inside and outside of the
moving window with size Nm = 8, respectively. The time labeled on
each line corresponds to the time when the window is translated to
the left side of the chain. Two unit cells are added to the left window
edge and four sites on the right of the window are contracted to the
right boundary to keep the window size unchanged. The threshold
1 − √

F = 0.005 was chosen for the moving window criterion.
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FIG. 11. (Color online) Comparison of local magnetization
evolving in time at specific positions xj on the left side of the
perturbation point between the different schemes: fixed and moving
window. The size of the fixed window is Nf = 240 and Nm = 8
for the moving window. (a) xj = −1; (b) xj = 11; (c) xj = 19;
(d) xj = 31. The dashed-dotted vertical line in each subplot points
out the time when the corresponding site at that position is out of the
window and absorbed into the right boundary.

Again, we study the local magnetization 〈Sz(x,t)〉 and
compare with the result obtained for the fixed window case.
The comparison is plotted in Fig. 10. In our numerical
calculation the size of the moving window is chosen to be
Nm = 8, compared to the size of a fixed window Nf = 240.
We can see that the moving window captures well the wave
front propagating to the left, and in this region it compares
well with the results from the fixed window. Once the moving
window has passed by, corresponding to the black region in
Fig. 8, the deviation is quite large because these sites have been
absorbed into the right boundary and are therefore represented
only in a small χ -dimensional Hilbert space. However, if we
are interested primarily in the state of the system in the vicinity
of the wave front, then the moving dynamical technique is
a great advantage as the costly time evolution procedure is
only carried out on a very small number of tensors. Thus this
approach can be an order of magnitude more efficient than the
fixed or expanding window approach.

We now examine the local magnetizations at some specific
positions of the spin chain. In Fig. 11, we plot 〈Sz(xj ,t)〉
at xj = {−1,11,19,31}. We can see that in all four subplots
〈Sz(xj ,t)〉 calculated using the moving window is quite similar
to that of the fixed window when the site is inside or to the left
of the window. Specifically, the further away from the initial
perturbation point, the longer is the time scale for which we
can obtain accurate results. This is easy to understand as it
takes a longer time for the window to move to the further
sites of the chain, and the region to the left of the chain is
well described by the Hilbert space of the semi-infinite chain.
When the window passes by a region of the lattice, these sites
are absorbed into the right boundary, so this causes the results
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FIG. 12. (Color online) Difference in local magnetizations evolv-
ing in time at specific positions xj on the left side of the perturbation
point between the different schemes: fixed and moving window.

measured after that time to be less accurate. Hence we see a
large deviation in the results at a time that corresponds to the
moving window having passed by the measurement location.

For a clearer comparison of 〈Sz(xj ,t)〉, we also plot the
absolute difference between the two schemes in Fig. 12. We
can see that at the early time the differences seem to be small
and then increase in time. These errors can be well controlled

FIG. 13. (Color online) (a) The spectrum obtained from the
moving window technique is projected onto the plane of frequency ω

and momentum q. (b) Comparison of the dispersion relations between
the fixed and moving window techniques with window sizes Nf = 60
and Nm = 40, respectively.

by manipulating the size of the window and the criteria for
moving the window.

The moving window technique is not so appropriate for
calculating the spectral function, since to obtain an accurate
real-space Fourier transform we need accurate data over a
large section of the lattice. However, the moving window
technique comes into its own for examining the dynamics
of the wave front itself, for example, even a small moving
window calculation should be adequate for distinguishing
ballistic versus diffusive transport. However, for the purpose of
comparison with the other techniques of fixed and expanding
window, we can also calculate the spectral function by
increasing the size of the window and exploiting the reflection
symmetry of the system. In Fig. 13(a), we show the plot for the
spectral function projected onto the frequency and momentum
plane. The window size in this case is chosen as Nm = 40.
Note that in order to obtain the spectral function, one needs to
calculate the unequal time two-point correlator A(x,t). Thanks
to the reflection symmetry of the system, A(−x,t) = A(x,t),
we only need to compute this quantity for positive x. Then
whenever the middle site of the initial window (the perturbed
site) is still inside the window, we can obtain a reliable result
for A(x,t) (x � 0). We also plot the comparison of dispersion
relations between two schemes in Fig. 13(a) and it seems to fit
very well. The absolute difference of the Haldane gap obtained
is of order 10−2. This difference can be reduced by increasing
the size of the window, trading off increased computation.

V. CONCLUSION

We have introduced two dynamical window techniques for
studying the real-time evolution of a locally perturbed infinite
1D system, the expanding window and the moving window.
Taking advantage of infinite boundary conditions, which have
been introduced to replace an infinite MPS by a finite MPS,
we have proved that these two techniques are viable and are a
more efficient replacement for the fixed window technique.

One of the great advantages of these techniques is a
large savings in computational resources as we only need
to compute the evolution of a small window of the system.
This is most significant for the moving window technique,
where the computational cost per time step does not increase
as the perturbation propagates through the system. This is
particularly relevant for cases where the region of interest is
quite small, for example, the immediate vicinity of the wave
front. For calculating quantities such as the spectral function,
we are interested in regions only where the correlation function
differs significantly from zero, so this approach, where the
dynamics are obtained accurately in a small region and
approximated elsewhere, is a significant improvement.

In these techniques, the choice of window size is critical.
We have introduced a criterion for automatically adjusting the
window, utilizing a fidelity threshold 1 − √

F . This can be
tuned such that the window tracks the wave front, however,
if the value is chosen inappropriately, the calculation will
be inaccurate or inefficient. For instance, in the expanding
window technique, the sharper the threshold, the more accurate
is the result we obtain. However, this may lead to a fast
growing window size and therefore may limit the efficiency
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(however, it will still be more efficient than a large fixed
window). In the moving window technique, if the threshold
is chosen to be either too large or too small, then there is a
danger that the wave front will move out of the window, which
will cause a severe loss of accuracy. However, there seems
to be a fairly large range of thresholds which successfully
capture the wave front in a near-optimal fashion so, in
practice, choosing an appropriate threshold appears to be not so
difficult.

Note added. Recently we learned of some related
works.26,27
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