30 research outputs found

    Jays are sensitive to cognitive illusions.

    Get PDF
    Funder: CA.RI.PA.RO FoundationJays hide food caches, steal them from conspecifics and use tactics to minimize cache theft. Jays are sensitive to the content of their own caches, retrieving items depending on their preferences and the perishability of the cached item. Whether jays impose the same content sensitivity when they steal caches is less clear. We adapted the 'cups-and-balls' magic routine, creating a cognitive illusion to test whether jays are sensitive to the (i) content of hidden items and (ii) type of displacement. Subjects were presented with two conditions in which hidden food was consistent with their expectations; and two conditions in which food was manipulated to violate their expectations by switching their second preferred food for their preferred food (up-value) or vice versa (de-value). Subjects readily accepted food when it was consistent with their expectations but were more likely to re-inspect the baited cup and alternative cup when their expectations were violated. In the de-value condition, jays exhibited longer latencies to consume the food and often rejected it. Dominant subjects were more likely to reject the food, suggesting that social factors influence their responses to cognitive illusions. Using cognitive illusions offers innovative avenues for investigating the psychological constraints in diverse animal minds

    A community-sourced glossary of open scholarship terms

    Get PDF
    Open scholarship has transformed research, and introduced a host of new terms in the lexicon of researchers. The ‘Framework for Open and Reproducible Research Teaching’ (FORRT) community presents a crowdsourced glossary of open scholarship terms to facilitate education and effective communication between experts and newcomers

    Neophobia and innovation in Critically Endangered Bali myna, Leucopsar rothschildi

    Get PDF
    Peer reviewed: TrueBehavioural flexibility can impact on adaptability and survival, particularly in today's changing world, and encompasses associated components like neophobia, e.g. responses to novelty, and innovation, e.g. problem-solving. Bali myna (Leucopsar rothschildi) are a Critically Endangered endemic species, which are a focus of active conservation efforts, including reintroductions. Gathering behavioural data can aid in improving and developing conservation strategies, like pre-release training and individual selection for release. In 22 captive Bali myna, we tested neophobia (novel object, novel food, control conditions), innovation (bark, cup, lid conditions) and individual repeatability of latency responses in both experiments. We found effects of condition and presence of heterospecifics, including longer latencies to touch familiar food in presence than absence of novel items, and between problem-solving tasks, as well as in the presence of non-competing heterospecifics than competing heterospecifics. Age influenced neophobia, with adults showing longer latencies than juveniles. Individuals were repeatable in latency responses: (1) temporally in both experiments; (2) contextually within the innovation experiment and between experiments, as well as being consistent in approach order across experiments, suggesting stable behaviour traits. These findings are an important starting point for developing conservation behaviour related strategies in Bali myna and other similarly threatened species

    Increasing animal cognition research in zoos.

    Get PDF
    Funder: Career Support Fund, University of Cambridge (awarded to RM, supporting RM and EGP)Animal cognition covers various mental processes including perception, learning, decision-making and memory, and animal behavior is often used as a proxy for measuring cognition. Animal cognition/behavior research has multiple benefits; it provides fundamental knowledge of animal biology and evolution but can also have applied conservation and welfare applications. Zoos provide an excellent yet relatively untapped resource for animal cognition research, because they house a wide variety of species-many of which are under threat-and allow close observation and relatively high experimental control compared to the wild. Multi-zoo collaboration leads to increased sample size and species representation, which in turn leads to more robust science. However, there are salient challenges associated with zoo-based cognitive research, which are animal-based (e.g., small sample sizes at single zoos, untrained/unhabituated subjects, side effects) and human-based (e.g., time restrictions, safety concerns, and perceptions of animals interacting with unnatural technology or apparatus). We aim to increase the understanding and subsequent uptake of animal cognition research in zoos, by transparently outlining the main benefits and challenges. Importantly, we use our own research (1) a study on novelty responses in hornbills, and (2) a multi-site collaboration called the "ManyBirds" Project to demonstrate how challenges may be overcome. These potential options include using "drop and go" apparatuses that require no training, close human contact or animal separation. This study is aimed at zoo animal care and research staff, as well as external researchers interested in zoo-based studies
    corecore