6 research outputs found

    SUS1 introns are required for efficient mRNA nuclear export in yeast

    Get PDF
    Efficient coupling between mRNA synthesis and export is essential for gene expression. Sus1/ENY2, a component of the SAGA and TREX-2 complexes, is involved in both transcription and mRNA export. While most yeast genes lack introns, we previously reported that yeast SUS1 bears two. Here we show that this feature is evolutionarily conserved and critical for Sus1 function. We determine that while SUS1 splicing is inefficient, it responds to cellular conditions, and intronic mutations either promoting or blocking splicing lead to defects in mRNA export and cell growth. Consistent with this, we find that an intron-less SUS1 only partially rescues sus1Δ phenotypes. Remarkably, splicing of each SUS1 intron is also affected by the presence of the other and by SUS1 exonic sequences. Moreover, by following SUS1 RNA and protein levels we establish that nonsense-mediated decay (NMD) pathway and the splicing factor Mud2 both play a role in SUS1 expression. Our data (and those of the accompanying work by Hossain et al.) provide evidence of the involvement of splicing, translation, and decay in the regulation of early events in mRNP biogenesis; and imply the additional requirement for a balance in splicing isoforms from a single gene

    SAGA-CORE subunit Spt7 is required for correct Ubp8 localization, chromatin association and deubiquitinase activity

    Get PDF
    13 páginas, 5 figuras, 1 tabla. Contiene información suplementaria en: Supplementary information accompanies this paper at https://doi.org/10.1186/s13072-020-00367-3Background: Histone H2B deubiquitination is performed by numerous deubiquitinases in eukaryotic cells including Ubp8, the catalytic subunit of the tetrameric deubiquitination module (DUBm: Ubp8; Sus1; Sgf11; Sgf73) of the Spt-Ada-Gcn5 acetyltransferase (SAGA). Ubp8 is linked to the rest of SAGA through Sgf73 and is activated by the adaptors Sus1 and Sgf11. It is unknown if DUBm/Ubp8 might also work in a SAGA-independent manner. Results: Here we report that a tetrameric DUBm is assembled independently of the SAGA-CORE components SPT7, ADA1 and SPT20. In the absence of SPT7, i.e., independent of the SAGA complex, Ubp8 and Sus1 are poorly recruited to SAGA-dependent genes and to chromatin. Notably, cells lacking Spt7 or Ada1, but not Spt20, show lower levels of nuclear Ubp8 than wild-type cells, suggesting a possible role for SAGA-CORE subunits in Ubp8 localization. Last, deletion of SPT7 leads to defects in Ubp8 deubiquitinase activity in in vivo and in vitro assays. Conclusions: Collectively, our studies show that the DUBm tetrameric structure can form without a complete intact SAGA-CORE complex and that it includes full-length Sgf73. However, subunits of this SAGA-CORE influence DUBm association with chromatin, its localization and its activity.This study was supported by funds to SR-N from the Spanish MINECO, MICIIN (BFU2014-57636, BFU2015-71978, PGC2018-099872-B-I00) and the Generalitat Valenciana (PROM/2012/061, ACOMP2014/061 and PROMETEO 2016/093). This work was supported by FEDER 2014–2020 and the Ministerio de Economia y Competitividad (MINECO) of Spain. V.G-M was supported by the FPU program from the Ministerio de Educación y Ciencia (AP2009-0917); C.C-N by the Generailtat Valenciana PROMETEO/2016/093; P.O-C by the FPI program from MINECO (BES2012-058587); and M.M-E by the GVA (Val I+D: ACIF/2015/025). The M.I-V lab was co-funded by European Regional Development Funds (ERDF) and the Horizon 2020 Framework Programme of the European Union under the grant agreement 688945 (Euro-BioImaging Prep Phase II).Peer reviewe

    The mRNA export adaptor Yra1 contributes to DNA double-strand break repair through its C-box domain.

    No full text
    Yra1 is an mRNA export adaptor involved in mRNA biogenesis and export in S. cerevisiae. Yra1 overexpression was recently shown to promote accumulation of DNA:RNA hybrids favoring DNA double strand breaks (DSB), cell senescence and telomere shortening, via an unknown mechanism. Yra1 was also identified at an HO-induced DSB and Yra1 depletion causes defects in DSB repair. Previous work from our laboratory showed that Yra1 ubiquitination by Tom1 is important for mRNA export. Here, we found that Yra1 is also ubiquitinated by the SUMO-targeted ubiquitin ligases Slx5-Slx8 implicated in the interaction of irreparable DSB with nuclear pores. We further show that Yra1 binds an HO-induced irreparable DSB in a process dependent on resection. Importantly, a Yra1 mutant lacking the evolutionarily conserved C-box is not recruited to an HO-induced irreparable DSB and becomes lethal under DSB induction in a HO-cut reparable system. Together, the data provide evidence that Yra1 plays a crucial role in DSB repair via homologous recombination. While Yra1 sumoylation and/or ubiquitination are dispensable, the Yra1 C-box region is essential in this process

    The Prefoldin Bud27 Mediates the Assembly of the Eukaryotic RNA Polymerases in an Rpb5-Dependent Manner

    Get PDF
    <div><p>The unconventional prefoldin URI/RMP, in humans, and its orthologue in yeast, Bud27, have been proposed to participate in the biogenesis of the RNA polymerases. However, this role of Bud27 has not been confirmed and is poorly elucidated. Our data help clarify the mechanisms governing biogenesis of the three eukaryotic RNA pols. We show evidence that Bud27 is the first example of a protein that participates in the biogenesis of the three eukaryotic RNA polymerases and the first example of a protein modulating their assembly instead of their nuclear transport. In addition we demonstrate that the role of Bud27 in RNA pols biogenesis depends on Rpb5. In fact, lack of <em>BUD27</em> affects growth and leads to a substantial accumulation of the three RNA polymerases in the cytoplasm, defects offset by the overexpression of <em>RPB5</em>. Supporting this, our data demonstrate that the lack of Bud27 affects the correct assembly of Rpb5 and Rpb6 to the three RNA polymerases, suggesting that this process occurs in the cytoplasm and is a required step prior to nuclear import. Also, our data support the view that Rpb5 and Rpb6 assemble somewhat later than the rest of the complexes. Furthermore, Bud27 Rpb5-binding but not PFD-binding domain is necessary for RNA polymerases biogenesis. In agreement, we also demonstrate genetic interactions between <em>BUD27</em>, <em>RPB5</em>, and <em>RPB6</em>. Bud27 shuttles between the nucleus and the cytoplasm in an Xpo1-independent manner, and also independently of microtubule polarization and possibly independently of its association with the RNA pols. Our data also suggest that the role of Bud27 in RNA pols biogenesis is independent of the chaperone prefoldin (PFD) complex and of Iwr1. Finally, the role of URI seems to be conserved in humans, suggesting conserved mechanisms in RNA pols biogenesis.</p> </div
    corecore