2,768 research outputs found

    Vortex macroscopic superpositions in ultracold bosons in a double-well potential

    Get PDF
    We study macroscopic superpositions in the orbital rather than the spatial degrees of freedom, in a three-dimensional double-well system. We show that the ensuing dynamics of NN interacting excited ultracold bosons, which in general requires at least eight single-particle modes and (N+7N){N+7 \choose N} Fock vectors, is described by a surprisingly small set of many-body states. An initial state with half the atoms in each well, and purposely excited in one of them, gives rise to the tunneling of axisymmetric and transverse vortex structures. We show that transverse vortices tunnel orders of magnitude faster than axisymmetric ones and are therefore more experimentally accessible. The tunneling process generates macroscopic superpositions only distinguishable by their orbital properties and within experimentally realistic times.Comment: 9 pages, 6 figure

    Symmetry breaking and singularity structure in Bose-Einstein condensates

    Get PDF
    We determine the trajectories of vortex singularities that arise after a single vortex is broken by a discretely symmetric impulse in the context of Bose-Einstein condensates in a harmonic trap. The dynamics of these singularities are analyzed to determine the form of the imprinted motion. We find that the symmetry-breaking process introduces two effective forces: a repulsive harmonic force that causes the daughter trajectories to be ejected from the parent singularity, and a Magnus force that introduces a torque about the axis of symmetry. For the analytical non-interacting case we find that the parent singularity is reconstructed from the daughter singularities after one period of the trapping frequency. The interactions between singularities in the weakly interacting system do not allow the parent vortex to be reconstructed. Analytic trajectories were compared to the actual minima of the wavefunction, showing less 0.5% error for impulse strength of (v=0.00005). We show that these solutions are valid within the impulse regime for various impulse strengths using numerical integration of the Gross-Pitaevskii equation. We also show that the actual duration of the symmetry breaking potential does not significantly change the dynamics of the system as long as the strength is below (v=0.0005).Comment: 14 pages, 10 figure

    Tunneling, self-trapping and manipulation of higher modes of a BEC in a double well

    Get PDF
    We consider an atomic Bose-Einstein condensate trapped in a symmetric one-dimensional double well potential in the four-mode approximation and show that the semiclassical dynamics of the two ground state modes can be strongly influenced by a macroscopic occupation of the two excited modes. In particular, the addition of the two excited modes already unveils features related to the effect of dissipation on the condensate. In general, we find a rich dynamics that includes Rabi oscillations, a mixed Josephson-Rabi regime, self-trapping, chaotic behavior, and the existence of fixed points. We investigate how the dynamics of the atoms in the excited modes can be manipulated by controlling the atomic populations of the ground states.Comment: 12 pages, 5 figure

    Sharp crossover from composite fermionization to phase separation in mesoscopic mixtures of ultracold bosons

    Get PDF
    We show that a two-component mixture of a few repulsively interacting ultracold atoms in a one-dimensional trap possesses very different quantum regimes and that the crossover between them can be induced by tuning the interactions in one of the species. In the composite fermionization regime, where the interactions between both components are large, none of the species show large occupation of any natural orbital. Our results show that by increasing the interaction in one of the species, one can reach the phase-separated regime. In this regime, the weakly interacting component stays at the center of the trap and becomes almost fully phase coherent, while the strongly interacting component is displaced to the edges of the trap. The crossover is sharp, as observed in the in the energy and the in the largest occupation of a natural orbital of the weakly interacting species. Such a transition is a purely mesoscopic effect which disappears for large atom numbers.Comment: 5 pages, 3 figure

    Graded-index optical fiber emulator of an interacting three-atom system: illumination control of particle statistics and classical non-separability

    Get PDF
    We show that a system of three trapped ultracold and strongly interacting atoms in one-dimension can be emulated using an optical fiber with a graded-index profile and thin metallic slabs. While the wave-nature of single quantum particles leads to direct and well known analogies with classical optics, for interacting many-particle systems with unrestricted statistics such analoga are not straightforward. Here we study the symmetries present in the fiber eigenstates by using discrete group theory and show that, by spatially modulating the incident field, one can select the atomic statistics, i.e., emulate a system of three bosons, fermions or two bosons or fermions plus an additional distinguishable particle. We also show that the optical system is able to produce classical non-separability resembling that found in the analogous atomic system.Comment: 14 pages, 5 figure
    corecore