112 research outputs found

    Baryogenesis and Degenerate Neutrinos

    Get PDF
    We bring the theoretical issue of whether two important cosmological demands, baryon asymmetry and degenerate neutrinos as hot dark matter, can be compatible in the context of the seesaw mechanism. To realize leptogenesis with almost degenerate Majorana neutrinos without severe fine-tuning of parameters, we propose the hybrid seesaw mechanism with a heavy Higgs triplet and right-handed neutrinos. Constructing a minimal hybrid seesaw model with SO(3) flavor symmetry for the neutrino sector, we show that the mass splittings for the atmospheric and solar neutrino oscillations which are consistent with the requirements for leptogenesis can naturally arise.Comment: 13 pages with one figure using axodraw.st

    Neutrinos Have Mass - So What?

    Full text link
    In this brief review, I discuss the new physics unveiled by neutrino oscillation experiments over the past several years, and discuss several attempts at understanding the mechanism behind neutrino masses and lepton mixing. It is fair to say that, while significant theoretical progress has been made, we are yet to construct a coherent picture that naturally explains non-zero, yet tiny, neutrino masses and the newly revealed, puzzling patterns of lepton mixing. I discuss what the challenges are, and point to the fact that more experimental input (from both neutrino and non-neutrino experiments) is dearly required - and that new data is expected to reveal, in the next several years, new information. Finally, I draw attention to the fact that neutrinos may have only just begun to reshape fundamental physics, given the fact that we are still to explain the LSND anomaly and because the neutrino oscillation phenomenon is ultimately sensitive to very small new-physics effects.Comment: invited brief review, 15 pages, 1 eps figure, typo corrected, reference adde

    Neutrino Masses and Lepton Flavour Violation in Thick Brane Scenarios

    Get PDF
    We address the issue of lepton flavour violation and neutrino masses in the ``fat-brane'' paradigm, where flavour changing processes are suppressed by localising different fermion field wave-functions at different positions (in the extra dimensions) in a thick brane. We study the consequences of suppressing lepton number violating charged lepton decays within this scenario for lepton masses and mixing angles. In particular, we find that charged lepton mass matrices are constrained to be quasi-diagonal. We further consider whether the same paradigm can be used to naturally explain small Dirac neutrino masses by considering the existence of three right-handed neutrinos in the brane, and discuss the requirements to obtain phenomenologically viable neutrino masses and mixing angles. Finally, we examine models where neutrinos obtain a small Majorana mass by breaking lepton number in a far away brane and show that, if the fat-brane paradigm is the solution to the absence of lepton number violating charged lepton decays, such models predict, in the absence of flavour symmetries, that charged lepton flavour violation will be observed in the next round of rare muon/tau decay experiments.Comment: 33 pages, 9 eps figure

    Seesaw Neutrino Signals at the Large Hadron Collider

    Full text link
    We discuss the scenario with gauge singlet fermions (right-handed neutrinos) accessible at the energy of the Large Hadron Collider. The singlet fermions generate tiny neutrino masses via the seesaw mechanism and also have sizable couplings to the standard-model particles. We demonstrate that these two facts, which are naively not satisfied simultaneously, are reconciled in the five-dimensional framework in various fashions, which make the seesaw mechanism observable. The collider signal of tri-lepton final states with transverse missing energy is investigated for two explicit examples of the observable seesaw, taking account of three types of neutrino mass spectrum and the constraint from lepton flavor violation. We find by showing the significance of signal discovery that the collider experiment has a potential to find signals of extra dimensions and the origin of small neutrino masses.Comment: 27 pages, 4 figure

    A Phase I/II Clinical Trial to evaluate the efficacy of baricitinib to prevent respiratory insufficiency progression in onco-hematological patients affected with COVID19: a structured summary of a study protocol for a randomised controlled trial

    Get PDF
    Objectives: Baricitinib is supposed to have a double effect on SARS-CoV2 infection. Firstly, it reduces the inflammatory response through the inhibition of the Januse-Kinase signalling transducer and activator of transcription (JAK-STAT) pathway. Moreover, it reduces the receptor mediated viral endocytosis by AP2-associated protein kinase 1 (AAK1) inhibition. We propose the use of baricinitib to prevent the progression of the respiratory insufficiency in SARS-CoV2 pneumonia in onco-haematological patients. In this phase Ib/II study, the primary objective in the safety cohort is to describe the incidence of severe adverse events associated with baricitinib administration. The primary objective of the randomized phase (baricitinib cohort versus standard of care cohort) is to evaluate the number of patients who did not require mechanical oxygen support since start of therapy until day +14 or discharge (whichever it comes first). The secondary objectives of the study (only randomized phase of the study) are represented by the comparison between the two arms of the study in terms of mortality and toxicity at day+30. Moreover, a description of the immunological related changes between the two arms of the study will be reported. Trial design: The trial is a phase I/II study with a safety run-in cohort (phase 1) followed by an open label phase II randomized controlled trial with an experimental arm compared to a standard of care arm

    Non-tachyonic brane inflation

    Get PDF
    We consider non-tachyonic hybrid inflation in the context of the braneworld cosmology. When one considers models for brane inflation, hybrid inflation is a natural consequence of the tachyon condensation if it appears at the end of inflation. In this case, however, reheating is a difficult problem due to the peculiar properties of the tachyon. In this paper we show some models for brane inflation where a new type of hybrid inflation is realized due to the localized matter fields. The obvious advantage of our scenario is successful reheating, which is due to the potential that is localized on the brane. The serious problem of the loop correction is also avoided.Comment: 14pages, latex2e, references added, final version to appear in PR

    A retrospective, multicenter study of the efficacy of lapatinib plus trastuzumab in HER2-positive metastatic breast cancer patients previously treated with trastuzumab, lapatinib, or both: the Trastyvere study

    Get PDF
    [Purpose]: To evaluate the efficacy and safety of lapatinib (L) and trastuzumab (T) combination in HER2-positive metastatic breast cancer (MBC) patients previously treated with T and/or L.[Materials and methods]: We conducted a retrospective, post-authorized, multicenter study including patients with HER2-positive MBC or locally advanced breast cancer (ABC) treated with the combination of L–T. Concomitant endocrine therapy, as well as brain metastasis and/or prior exposure to L, were allowed.[Results]: One hundred and fifteen patients from 14 institutions were included. The median age was 59.8 years. The median number of prior T regimens in the advanced setting was 3 and 73 patients had received a prior L regimen. The clinical benefit rate (CBR) was 34.8% (95% CI 26.1–43.5). Among other efficacy endpoints, the overall response rate was 21.7%, and median progression-free survival (PFS) and overall survival were 3.9 and 21.6 months, respectively. Heavily pretreated and ≄ 3 metastatic organ patients showed lower CBR and PFS than patients with a low number of previous regimens and < 3 metastatic organs. Moreover, CBR did not significantly change in L-pretreated compared with L-naĂŻve patients (31.5% versus 40.5% for L-pretreated versus L-naĂŻve). Grade 3/4 adverse events were reported in 19 patients (16.5%).[Conclusion]: The combination of L–T is an effective and well-tolerated regimen in heavily pretreated patients and remains active among patients progressing on prior L-based therapy. Our study suggests that the L–T regimen is a safe and active chemotherapy-free option for MBC patients previously treated with T and/or L.This work was supported by GlaxoSmithKline plc (GSK) through a contract with Medica Scientia Innovation Research (MedSIR), an academic research organization focused on independent clinical research development

    Models of Neutrino Masses and Mixings

    Full text link
    We review theoretical ideas, problems and implications of neutrino masses and mixing angles. We give a general discussion of schemes with three light neutrinos. Several specific examples are analyzed in some detail, particularly those that can be embedded into grand unified theories.Comment: 44 pages, 2 figures, version accepted for publication on the Focus Issue on 'Neutrino Physics' edited by F.Halzen, M.Lindner and A. Suzuki, to be published in New Journal of Physics

    Escape from washing out of baryon number in a two-zero-texture general Zee model compatible with the large mixing angle MSW solution

    Full text link
    We propose a two-zero-texture general Zee model, compatible with the large mixing angle Mikheyev-Smirnov-Wolfenstein solution. The washing out of the baryon number does not occur in this model for an adequate parameter range. We check the consistency of a model with the constraints coming from flavor changing neutral current processes, the recent cosmic microwave background observation, and the Z-burst scenario.Comment: 22 pages, 2 eps figures, Type set revtex

    Supersymmetric Seesaw without Singlet Neutrinos: Neutrino Masses and Lepton-Flavour Violation

    Get PDF
    We consider the supersymmetric seesaw mechanism induced by the exchange of heavy SU(2)_W triplet states, rather than `right-handed' neutrino singlets, to generate neutrino masses. We show that in this scenario the neutrino flavour structure tested at low-energy in the atmospheric and solar neutrino experiments is directly inherited from the neutrino Yukawa couplings to the triplets. This allows us to predict the ratio of the tau --> mu gamma (or tau --> e gamma) and mu --> e gamma decay rates in terms of the low-energy neutrino parameters. Moreover, once the model is embedded in a grand unified model, quark-flavour violation can be linked to lepton-flavour violation.Comment: 26 LaTeX pages, 10 postscript figures, uses epsfig and axodraw. Comments and references adde
    • 

    corecore