49 research outputs found

    The effect of a cusped matter distribution on the formation of brightest cluster members

    Get PDF
    We present N-body simulations of galaxy groups embedded in a common halo of matter. We study the influence of the different initial conditions upon the evolution of the group and show that denser configurations evolve faster, as expected. We then concentrate on the influence of the initial radial density profile of the common halo and of the galaxy distribution. We select two kinds of density distributions, a singular profile (modeled by a Hernquist distribution) and a profile with a flat core (modeled by a Plummer sphere). In all cases we witness the formation of a central massive object due to mergings of individual galaxies and to accretion of stripped material, but both its formation history and its properties depend heavily on the initial distribution. In Hernquist models the formation is due to a ``burst'' of mergings in the inner parts, due to the large initial concentration of galaxies in the center. The merging rate is much slower in the initial phases of the evolution of a Plummer distribution, where the contribution of accretion to the formation of the central object is much more important. The central objects formed within Plummer distributions have projected density profiles which are not in agreement with the radial profiles of observed brightest cluster members, unless the percentage of mass in the common halo is small. On the contrary the central object formed in initially cusped models has projected radial profiles in very good agreement with those of brightest cluster members, sometimes also showing luminosity excess over the r1/4r^{1/4} law in the outer parts, as is observed in cD galaxies.Comment: 18 pages, 17 figures, to be published in MNRAS. For better resolution figures, see http://www-obs.cnrs-mrs.fr/dynamique/pap/carlos.htm

    N-body simulations of galaxies and groups of galaxies with the Marseille GRAPE systems

    Get PDF
    I review the Marseille GRAPE systems and the N-body simulations done with them. I first describe briefly the available hardware and software, their possibilities and their limitations. I then describe work done on interacting galaxies and groups of galaxies. This includes simulations of the formation of ring galaxies, simulations of bar destruction by massive compact satellites, of merging in compact groups and of the formation of brightest members in clusters of galaxies.Comment: 13 pages, 5 figures, to be published in "Non-linear Dynamics and Chaos in Astrophysics", eds. J.R. Buchler, S. Gottesman, J. Hunter and H. Kandrup, Annals of the New York Academy of Science

    PaCTS 1.0: A Crowdsourced Reporting Standard for Paleoclimate Data

    Get PDF
    The progress of science is tied to the standardization of measurements, instruments, and data. This is especially true in the Big Data age, where analyzing large data volumes critically hinges on the data being standardized. Accordingly, the lack of community-sanctioned data standards in paleoclimatology has largely precluded the benefits of Big Data advances in the field. Building upon recent efforts to standardize the format and terminology of paleoclimate data, this article describes the Paleoclimate Community reporTing Standard (PaCTS), a crowdsourced reporting standard for such data. PaCTS captures which information should be included when reporting paleoclimate data, with the goal of maximizing the reuse value of paleoclimate data sets, particularly for synthesis work and comparison to climate model simulations. Initiated by the LinkedEarth project, the process to elicit a reporting standard involved an international workshop in 2016, various forms of digital community engagement over the next few years, and grassroots working groups. Participants in this process identified important properties across paleoclimate archives, in addition to the reporting of uncertainties and chronologies; they also identified archive-specific properties and distinguished reporting standards for new versus legacy data sets. This work shows that at least 135 respondents overwhelmingly support a drastic increase in the amount of metadata accompanying paleoclimate data sets. Since such goals are at odds with present practices, we discuss a transparent path toward implementing or revising these recommendations in the near future, using both bottom-up and top-down approaches

    PaCTS 1.0: A Crowdsourced Reporting Standard for Paleoclimate Data

    Get PDF
    The progress of science is tied to the standardization of measurements, instruments, and data. This is especially true in the Big Data age, where analyzing large data volumes critically hinges on the data being standardized. Accordingly, the lack of community-sanctioned data standards in paleoclimatology has largely precluded the benefits of Big Data advances in the field. Building upon recent efforts to standardize the format and terminology of paleoclimate data, this article describes the Paleoclimate Community reporTing Standard (PaCTS), a crowdsourced reporting standard for such data. PaCTS captures which information should be included when reporting paleoclimate data, with the goal of maximizing the reuse value of paleoclimate data sets, particularly for synthesis work and comparison to climate model simulations. Initiated by the LinkedEarth project, the process to elicit a reporting standard involved an international workshop in 2016, various forms of digital community engagement over the next few years, and grassroots working groups. Participants in this process identified important properties across paleoclimate archives, in addition to the reporting of uncertainties and chronologies; they also identified archive-specific properties and distinguished reporting standards for new versus legacy data sets. This work shows that at least 135 respondents overwhelmingly support a drastic increase in the amount of metadata accompanying paleoclimate data sets. Since such goals are at odds with present practices, we discuss a transparent path toward implementing or revising these recommendations in the near future, using both bottom-up and top-down approaches

    Cellular senescence is immunogenic and promotes anti-tumor immunity

    Full text link
    Cellular senescence is a stress response that activates innate immune cells, but little is known about its interplay with the adaptive immune system. Here, we show that senescent cells combine several features that render them highly efficient in activating dendritic cells (DCs) and antigen-specific CD8 T cells. This includes the release of alarmins, activation of interferon signaling, enhanced MHC class I machinery, and presentation of senescence-specific self-peptides that can activate CD8 T cells. In the context of cancer, immunization with senescent cancer cells elicits strong anti-tumor protection mediated by DCs and CD8 T cells. Interestingly, this protection is superior to immunization with cancer cells undergoing immunogenic cell death. Finally, the induction of senescence in human primary cancer cells also augments their ability to activate autologous antigen-specific tumor-infiltrating CD8 lymphocytes. Our study indicates that senescent cancer cells can be exploited to develop efficient and protective CD8-dependent anti-tumor immune responses

    The efficacy of chemotherapy is limited by intratumoral senescent cells expressing PD-L2

    Full text link
    Chemotherapy often generates intratumoral senescent cancer cells that strongly modify the tumor microenvironment, favoring immunosuppression and tumor growth. We discovered, through an unbiased proteomics screen, that the immune checkpoint inhibitor programmed cell death 1 ligand 2 (PD-L2) is highly upregulated upon induction of senescence in different types of cancer cells. PD-L2 is not required for cells to undergo senescence, but it is critical for senescent cells to evade the immune system and persist intratumorally. Indeed, after chemotherapy, PD-L2-deficient senescent cancer cells are rapidly eliminated and tumors do not produce the senescence-associated chemokines CXCL1 and CXCL2. Accordingly, PD-L2-deficient pancreatic tumors fail to recruit myeloid-derived suppressor cells and undergo regression driven by CD8 T cells after chemotherapy. Finally, antibody-mediated blockade of PD-L2 strongly synergizes with chemotherapy causing remission of mammary tumors in mice. The combination of chemotherapy with anti-PD-L2 provides a therapeutic strategy that exploits vulnerabilities arising from therapy-induced senescence. © 2024, The Author(s)

    Long-term follow-up of certolizumab pegol in uveitis due to immune-mediated inflammatory diseases: multicentre study of 80 patients

    Full text link
    ObjectivesTo evaluate effectiveness and safety of certolizumab pegol (CZP) in uveitis due to immune-mediated inflammatory diseases (IMID).MethodsMulticentre study of CZP-treated patients with IMID uveitis refractory to conventional immunosuppressant. Effectiveness was assessed through the following ocular parameters: best-corrected visual acuity, anterior chamber cells, vitritis, macular thickness and retinal vasculitis. These variables were compared between the baseline, and first week, first, third, sixth months, first and second year.ResultsWe studied 80 (33 men/47 women) patients (111 affected eyes) with a mean age of 41.6 +/- 11.7 years. The IMID included were: spondyloarthritis (n=43), Behcet's disease (n=10), psoriatic arthritis (n=8), Crohn's disease (n=4), sarcoidosis (n=2), juvenile idiopathic arthritis (n=1), reactive arthritis (n=1), rheumatoid arthritis (n=1), relapsing polychondritis (n=1),ConclusionsCZP seems to be effective and safe in uveitis related to different IMID, even in patients refractory to previous biological drugs
    corecore