6 research outputs found

    Clinical role of subtraction ictal SPECT coregistered to MR Imaging and 18F-FDG PET in pediatric epilepsy

    Get PDF
    A precise assessment of the drug-resistant epileptic pediatric population for surgical candidacy is often challenging, and to date there are no evidence-based guidelines for presurgical identification of the epileptogenic zone. To evaluate the usefulness of radionuclide imaging techniques for presurgical evaluation of epileptic pediatric patients, we compared the results of video-electroencephalography (EEG), brain MR imaging, interictal SPECT, ictal SPECT, subtraction ictal SPECT coregistered to MR imaging (SISCOM), and interictal PET with (18)F-FDG. METHODS: Fifty-four children with drug-resistant epilepsy who had undergone video-EEG monitoring, brain MR imaging, interictal and ictal brain perfusion SPECT, SISCOM, and (18)F-FDG PET were included in this study. All abnormal findings revealed by these neuroimaging techniques were compared with the presumed location of the epileptogenic zone (PEZ) as determined by video-EEG and clinical data. The proportion of localizing studies for each technique was statistically compared. In the 18 patients who underwent resective brain surgery, neuroimaging results were compared with histopathology results and surgical outcome. RESULTS: SISCOM and (18)F-FDG PET concordance with the PEZ was significantly higher than MR imaging (P < 0.05). MR imaging showed localizing results in 21 of 54 cases (39%), SISCOM in 36 of 54 cases (67%), and (18)F-FDG PET in 31 of 54 cases (57%). If we consider SISCOM and (18)F-FDG PET results together, nuclear medicine imaging techniques showed coinciding video-EEG results in 76% of patients (41/54). In those cases in which MR imaging failed to identify any epileptogenic lesion (61% [33/54]), SISCOM or (18)F-FDG PET findings matched PEZ in 67% (22/33) of cases. CONCLUSION: SISCOM and (18)F-FDG PET provide complementary presurgical information that matched video-EEG results and clinical data in three fourths of our sample. SISCOM was particularly useful in those cases in which MR imaging findings were abnormal but no epileptogenic lesion was identified. Radionuclide imaging techniques are both useful and reliable, extending the possibility of surgical treatment to patients who may have been discouraged without a nuclear medicine approach

    Whole body correction of mucopolysaccharidosis IIIA by intracerebrospinal fluid gene therapy

    Get PDF
    For most lysosomal storage diseases (LSDs) affecting the CNS, there is currently no cure. The BBB, which limits the bioavailability of drugs administered systemically, and the short half-life of lysosomal enzymes, hamper the development of effective therapies. Mucopolysaccharidosis type IIIA (MPS IIIA) is an autosomic recessive LSD caused by a deficiency in sulfamidase, a sulfatase involved in the stepwise degradation of glycosaminoglycan (GAG) heparan sulfate. Here, we demonstrate that intracerebrospinal fluid (intra-CSF) administration of serotype 9 adenoassociated viral vectors (AAV9s) encoding sulfamidase corrects both CNS and somatic pathology in MPS IIIA mice. Following vector administration, enzymatic activity increased throughout the brain and in serum, leading to whole body correction of GAG accumulation and lysosomal pathology, normalization of behavioral deficits, and prolonged survival. To test this strategy in a larger animal, we treated beagle dogs using intracisternal or intracerebroventricular delivery. Administration of sulfamidase-encoding AAV9 resulted in transgenic expression throughout the CNS and liver and increased sulfamidase activity in CSF. High-titer serum antibodies against AAV9 only partially blocked CSF-mediated gene transfer to the brains of dogs. Consistently, anti-AAV antibody titers were lower in CSF than in serum collected from healthy and MPS IIIA-affected children. These results support the clinical translation of this approach for the treatment of MPS IIIA and other LSDs with CNS involvement

    Clinical role of subtraction ictal SPECT coregistered to MR Imaging and 18F-FDG PET in pediatric epilepsy

    No full text
    A precise assessment of the drug-resistant epileptic pediatric population for surgical candidacy is often challenging, and to date there are no evidence-based guidelines for presurgical identification of the epileptogenic zone. To evaluate the usefulness of radionuclide imaging techniques for presurgical evaluation of epileptic pediatric patients, we compared the results of video-electroencephalography (EEG), brain MR imaging, interictal SPECT, ictal SPECT, subtraction ictal SPECT coregistered to MR imaging (SISCOM), and interictal PET with (18)F-FDG. METHODS: Fifty-four children with drug-resistant epilepsy who had undergone video-EEG monitoring, brain MR imaging, interictal and ictal brain perfusion SPECT, SISCOM, and (18)F-FDG PET were included in this study. All abnormal findings revealed by these neuroimaging techniques were compared with the presumed location of the epileptogenic zone (PEZ) as determined by video-EEG and clinical data. The proportion of localizing studies for each technique was statistically compared. In the 18 patients who underwent resective brain surgery, neuroimaging results were compared with histopathology results and surgical outcome. RESULTS: SISCOM and (18)F-FDG PET concordance with the PEZ was significantly higher than MR imaging (P < 0.05). MR imaging showed localizing results in 21 of 54 cases (39%), SISCOM in 36 of 54 cases (67%), and (18)F-FDG PET in 31 of 54 cases (57%). If we consider SISCOM and (18)F-FDG PET results together, nuclear medicine imaging techniques showed coinciding video-EEG results in 76% of patients (41/54). In those cases in which MR imaging failed to identify any epileptogenic lesion (61% [33/54]), SISCOM or (18)F-FDG PET findings matched PEZ in 67% (22/33) of cases. CONCLUSION: SISCOM and (18)F-FDG PET provide complementary presurgical information that matched video-EEG results and clinical data in three fourths of our sample. SISCOM was particularly useful in those cases in which MR imaging findings were abnormal but no epileptogenic lesion was identified. Radionuclide imaging techniques are both useful and reliable, extending the possibility of surgical treatment to patients who may have been discouraged without a nuclear medicine approach

    Whole body correction of mucopolysaccharidosis IIIA by intracerebrospinal fluid gene therapy

    No full text
    For most lysosomal storage diseases (LSDs) affecting the CNS, there is currently no cure. The BBB, which limits the bioavailability of drugs administered systemically, and the short half-life of lysosomal enzymes, hamper the development of effective therapies. Mucopolysaccharidosis type IIIA (MPS IIIA) is an autosomic recessive LSD caused by a deficiency in sulfamidase, a sulfatase involved in the stepwise degradation of glycosaminoglycan (GAG) heparan sulfate. Here, we demonstrate that intracerebrospinal fluid (intra-CSF) administration of serotype 9 adenoassociated viral vectors (AAV9s) encoding sulfamidase corrects both CNS and somatic pathology in MPS IIIA mice. Following vector administration, enzymatic activity increased throughout the brain and in serum, leading to whole body correction of GAG accumulation and lysosomal pathology, normalization of behavioral deficits, and prolonged survival. To test this strategy in a larger animal, we treated beagle dogs using intracisternal or intracerebroventricular delivery. Administration of sulfamidase-encoding AAV9 resulted in transgenic expression throughout the CNS and liver and increased sulfamidase activity in CSF. High-titer serum antibodies against AAV9 only partially blocked CSF-mediated gene transfer to the brains of dogs. Consistently, anti-AAV antibody titers were lower in CSF than in serum collected from healthy and MPS IIIA-affected children. These results support the clinical translation of this approach for the treatment of MPS IIIA and other LSDs with CNS involvement
    corecore