42 research outputs found

    Swelling-Activated Ca2+ Channels Trigger Ca2+ Signals in Merkel Cells

    Get PDF
    Merkel cell-neurite complexes are highly sensitive touch receptors comprising epidermal Merkel cells and sensory afferents. Based on morphological and molecular studies, Merkel cells are proposed to be mechanosensory cells that signal afferents via neurotransmission; however, functional studies testing this hypothesis in intact skin have produced conflicting results. To test this model in a simplified system, we asked whether purified Merkel cells are directly activated by mechanical stimulation. Cell shape was manipulated with anisotonic solution changes and responses were monitored by Ca2+ imaging with fura-2. We found that hypotonic-induced cell swelling, but not hypertonic solutions, triggered cytoplasmic Ca2+ transients. Several lines of evidence indicate that these signals arise from swelling-activated Ca2+-permeable ion channels. First, transients were reversibly abolished by chelating extracellular Ca2+, demonstrating a requirement for Ca2+ influx across the plasma membrane. Second, Ca2+ transients were initially observed near the plasma membrane in cytoplasmic processes. Third, voltage-activated Ca2+ channel (VACC) antagonists reduced transients by half, suggesting that swelling-activated channels depolarize plasma membranes to activate VACCs. Finally, emptying internal Ca2+ stores attenuated transients by 80%, suggesting Ca2+ release from stores augments swelling-activated Ca2+ signals. To identify candidate mechanotransduction channels, we used RT-PCR to amplify ion-channel transcripts whose pharmacological profiles matched those of hypotonic-evoked Ca2+ signals in Merkel cells. We found 11 amplicons, including PKD1, PKD2, and TRPC1, channels previously implicated in mechanotransduction in other cells. Collectively, these results directly demonstrate that Merkel cells are activated by hypotonic-evoked swelling, identify cellular signaling mechanisms that mediate these responses, and support the hypothesis that Merkel cells contribute to touch reception in the Merkel cell-neurite complex

    Mutant sodium channel for tumor therapy

    No full text
    Viral vectors have been used to deliver a wide range of therapeutic genes to tumors. In this study, a novel tumor therapy was achieved by the delivery of a mammalian brain sodium channel, ASIC2a, carrying a mutation that renders it constitutively open. This channel was delivered to tumor cells using a herpes simplex virus-1/Epstein–Barr virus (HSV/EBV) hybrid amplicon vector in which gene expression was controlled by a tetracycline regulatory system (tet-on) with silencer elements. Upon infection and doxycycline induction of mutant channel expression in tumor cells, the open channel led to amiloride-sensitive sodium influx as assessed by patch clamp recording and sodium imaging in culture. Within hours, tumor cells swelled and died. In addition to cells expressing the mutant channel, adjacent, noninfected cells connected by gap junctions also died. Intratumoral injection of HSV/EBV amplicon vector encoding the mutant sodium channel and systemic administration of doxycycline led to regression of subcutaneous tumors in nude mice as assessed by in vivo bioluminescence imaging. The advantage of this direct mode of tumor therapy is that all types of tumor cells become susceptible and death is rapid with no time for the tumor cells to become resistant

    A role for ASIC3 in the modulation of high-intensity pain stimuli

    No full text
    Acid-sensing ion channel 3 (ASIC3), a proton-gated ion channel of the degenerins/epithelial sodium channel (DEG/ENaC) receptor family is expressed predominantly in sensory neurons including nociceptive neurons responding to protons. To study the role of ASIC3 in pain signaling, we generated ASIC3 knockout mice. Mutant animals were healthy and responded normally to most sensory stimuli. However, in behavioral assays for pain responses, ASIC3 null mutant mice displayed a reduced latency to the onset of pain responses, or more pain-related behaviors, when stimuli of moderate to high intensity were used. This unexpected effect seemed independent of the modality of the stimulus and was observed in the acetic acid-induced writhing test (0.6 vs. 0.1–0.5%), in the hot-plate test (52.5 and 55 vs. 50°C), and in tests for mechanically induced pain (tail-pinch vs. von Frey filaments). We postulate that ASIC3 is involved in modulating moderate- to high-intensity pain sensation

    cAMP-dependent protein kinase phosphorylation of the acid-sensing ion channel-1 regulates its binding to the protein interacting with C-kinase-1

    No full text
    The acid-sensing ion channel-1 (ASIC1) contributes to synaptic plasticity and may influence the response to cerebral ischemia and acidosis. We found that cAMP-dependent protein kinase phosphorylated heterologously expressed ASIC1 and endogenous ASIC1 in brain slices. ASIC1 also showed significant phosphorylation under basal conditions. Previous studies showed that the extreme C-terminal residues of ASIC1 bind the PDZ domain of the protein interacting with C-kinase-1 (PICK1). We found that protein kinase A phosphorylation of Ser-479 in the ASIC1 C terminus interfered with PICK1 binding. In contrast, minimizing phosphorylation or mutating Ser-479 to Ala enhanced PICK1 binding. Phosphorylation-dependent disruption of PICK1 binding reduced the cellular colocalization of ASIC1 and PICK1. Thus, the ASIC1 C terminus contains two sites that influence its binding to PICK1. Regulation of this interaction by phosphorylation provides a mechanism to control the cellular localization of ASIC1
    corecore