1,896 research outputs found

    Photosynthesis and conductance of spring-wheat leaves: field response to continuous free-air atmospheric CO2 enrichment

    Get PDF
    Spring wheat was grown from emergence to grain maturity in two partial pressures of CO2 (pCO2): ambient air of nominally 37 Pa and air enriched with CO2 to 55 Pa using a free-air CO2 enrichment (FACE) apparatus. This experiment was the first of its kind to be conducted within a cereal field without the modifications or disturbance of microclimate and rooting environment that accompanied previous studies. It provided a unique opportunity to examine the hypothesis that continuous exposure of wheat to elevated pCO2 will lead to acclimatory loss of photosynthetic capacity. The diurnal courses of photosynthesis and conductance for upper canopy leaves were followed throughout the development of the crop and compared to model-predicted rates of photosynthesis. The seasonal average of midday photosynthesis rates was 28% greater in plants exposed to elevated pCO2 than in contols and the seasonal average of the daily integrals of photosynthesis was 21% greater in elevated pCO2 than in ambient air. The mean conductance at midday was reduced by 36%. The observed enhancement of photosynthesis in elevated pCO2 agreed closely with that predicted from a mechanistic biochemical model that assumed no acclimation of photosynthetic capacity. Measured values fell below predicted only in the flag leaves in the mid afternoon before the onset of grain-filling and over the whole diurnal course at the end of grain-filling. The loss of enhancement at this final stage was attributed to the earlier senescence of flag leaves in elevated pCO2. In contrast to some controlled-environment and field-enclosure studies, this field-scale study of wheat using free-air CO2 enrichment found little evidence of acclimatory loss of photosynthetic capacity with growth in elevated pCO2 and a significant and substantial increase in leaf photosynthesis throughout the life of the crop

    Does Leaf Position within a Canopy Affect Acclimation of Photosynthesis to Elevated CO2? . Analysis of a Wheat Crop under Free-Air CO2 Enrichment

    Get PDF
    Previous studies of photosynthetic acclimation to elevated CO2 have focused on the most recently expanded, sunlit leaves in the canopy. We examined acclimation in a vertical profile of leaves through a canopy of wheat (Triticum aestivum L.). The crop was grown at an elevated CO2 partial pressure of 55 Pa within a replicated field experiment using free-air CO2 enrichment. Gas exchange was used to estimate in vivo carboxylation capacity and the maximum rate of ribulose-1,5-bisphosphate-limited photosynthesis. Net photosynthetic CO2 uptake was measured for leaves in situ within the canopy. Leaf contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), light-harvesting-complex (LHC) proteins, and total N were determined. Elevated CO2 did not affect carboxylation capacity in the most recently expanded leaves but led to a decrease in lower, shaded leaves during grain development. Despite this acclimation, in situ photosynthetic CO2 uptake remained higher under elevated CO2. Acclimation at elevated CO2 was accompanied by decreases in both Rubisco and total leaf N contents and an increase in LHC content. Elevated CO2 led to a larger increase in LHC/Rubisco in lower canopy leaves than in the uppermost leaf. Acclimation of leaf photosynthesis to elevated CO2 therefore depended on both vertical position within the canopy and the developmental stage

    Non-equilibrium Goldstone phenomenon in tachyonic preheating

    Full text link
    The dominance of the direct production of elementary Goldstone waves is demonstrated in tachyonic preheating by numerically determining the evolution of the dispersion relation, the equation of state and the kinetic power spectra for the angular degree of freedom of the complex matter field. The importance of the domain structure in the order parameter distribution for the quantitative understanding of the excitation mechanism is emphasized. Evidence is presented for the very early decoupling of the low-momentum Goldstone modes.Comment: 14 LaTeX pages, 5 figures, version published in Phys. Rev.

    Synchronizing Web Documents with Style

    Get PDF
    In this paper we report on our efforts to define a set of document extensions to Cascading Style Sheets (CSS) that allow for structured timing and synchronization of elements within a Web page. Our work considers the scenario in which the temporal structure can be decoupled from the content of the Web page in a similar way that CSS does with the layout, colors and fonts. Based on the SMIL (Synchronized Multimedia Integration Language) temporal model we propose CSS document extensions and discuss the design and implementation of a proof of concept that realizes our contributions. As HTML5 seems to move away from technologies like Flash and XML (eXtensible Markup Language), we believe our approach provides a flexible declarative solution to specify rich media experiences that is more aligned with current Web practices

    Flavor Ratios of Astrophysical Neutrinos: Implications for Precision Measurements

    Full text link
    We discuss flavor-mixing probabilities and flavor ratios of high energy astrophysical neutrinos. In the first part of this paper, we expand the neutrino flavor-fluxes in terms of the small parameters U_{e3} and pi/4 - theta_{23}, and show that there are universal first and second order corrections. The second order term can exceed the first order term, and so should be included in any analytic study. We also investigate the probabilities and ratios after a further expansion around the tribimaximal value of sin^2 theta_{12} = 1/3. In the second part of the paper, we discuss implications of deviations of initial flavor ratios from the usually assumed, idealized flavor compositions for pion, muon-damped, and neutron beam sources, viz., (1 : 2 : 0), (0 : 1 : 0), and (1 : 0 : 0), respectively. We show that even small deviations have significant consequences for the observed flavor ratios at Earth. If initial flavor deviations are not taken into account in analyses, then false inferences for the values in the PMNS matrix elements (angles and phase) may result.Comment: 32 pages, 15 figures. Minor changes, matches version in JHE

    Video Analysis Tools for Annotating User-Generated Content from Social Events

    Get PDF
    In this presentation we present how low-level metadata extraction tools have been applied in the context of a pan-European project called Together Anywhere, Together Anytime (TA2). The TA2 project studies new forms of computer-mediated social communications between spatially and temporally distant people. In particular, we concentrate on automatic video analysis tools in an asynchronous community-based video sharing environment called MyVideos, in which users can experience and share personalized music concert videos within their social grou

    Development of planar pixel modules for the ATLAS high luminosity LHC tracker upgrade

    Get PDF
    The high-luminosity LHC will present significant challenges for tracking systems. ATLAS is preparing to upgrade the entire tracking system, which will include a significantly larger pixel detector. This paper reports on the development of large area planar detectors for the outer pixel layers and the pixel endcaps. Large area sensors have been fabricated and mounted onto 4 FE-I4 readout ASICs, the so-called quad-modules, and their performance evaluated in the laboratory and testbeam. Results from characterisation of sensors prior to assembly, experience with module assembly, including bump-bonding and results from laboratory and testbeam studies are presented

    HP-LT rocks exhumed during intra-oceanic subduction: the example of the Escambray massif (Cuba).

    Get PDF
    High-Presssure metabasites embedded in a serpentinite or metasedimentary matrix from the Sancti Spiritus dome (Escambray massif, Central Cuba) have been studied in order to better understand the origine and the evolution of the Northern Carribean boundary plate during the Cretaceous, in a global subduction context. Geochemical analyses (major, trace elements and isotopes) of the high pressure rocks show that they could be partially derived from the Cretaceous calc-alkaline arc described in Central Cuba, these were probably incorporated in the subduction zone by tectonic erosion. The High-Pressure rocks record a prograde path from the epidote bearing amphibolite facies to the barroisite bearing eclogite facies (P = 19 ± 2 Kbar, T = 590 ± 90 °C). These metabasites show evidence of retrogression starting from the glaucophane bearing eclogite facies to the lawsonite bearing blueschist facies. Therefore, these HP/LT rocks are characterized by a counter-clockwise cooling P/T path, which can be explained by the exhumation of HP rocks while the subduction was still active. Concordant geochronological data (Rb/Sr and Ar/Ar) suggest that the main exhumation of HP/LT rocks from the Sancti Spiritus dome occurred 70 Ma ago by top to SW thrusting. The retrogressed trajectory of these rocks, means that the northeast subduction of the Farallon plate continued after 70Ma. The final exhumation can be correlated with the beginning of the collision between the Bahamas platform and the Cretaceous island arc that induced a change of the subduction kinematic

    Signature of sterile species in atmospheric neutrino data at neutrino telescopes

    Full text link
    The MiniBooNE results have still not been able to comprehensively rule out the oscillation interpretation of the LSND experiment. So far the so-called short baseline experiments with energy in the MeV range and baseline of few meters have been probing the existence of sterile neutrinos. We show how signatures of these extra sterile states could be obtained in TeV energy range atmospheric neutrinos travelling distances of thousands of kilometers. Atmospheric neutrinos in the TeV range would be detected by the upcoming neutrino telescopes. Of course vacuum oscillations of these neutrinos would be very small. However, we show that resonant matter effects inside the Earth could enhance these very tiny oscillations into near-maximal transitions, which should be hard to miss. We show that imprint of sterile neutrinos could be unambiguously obtained in this high energy atmospheric neutrino event sample. Not only would neutrino telescopes tell the presence of sterile neutrinos, it should also be possible for them to distinguish between the different possible mass and mixing scenarios with additional sterile states.Comment: 26 pages, 11 figures, Version to appear in JHE
    corecore