119,671 research outputs found

    Optical absorption and energy-loss spectra of aligned carbon nanotubes

    Get PDF
    Optical-absorption cross-sections and energy-loss spectra of aligned multishell carbon nanotubes are investigated, on the basis of photonic band-structure calculations. A local graphite-like dielectric tensor is assigned to every point of the tubules, and the effective transverse dielectric function of the composite is computed by solving Maxwell's equations in media with tensor-like dielectric functions. A Maxwell-Garnett-like approach appropriate to the case of infinitely long anisotropic tubules is also developed. Our full calculations indicate that the experimentally measured macroscopic dielectric function of carbon nanotube materials is the result of a strong electromagnetic coupling between the tubes. An analysis of the electric-field pattern associated with this coupling is presented, showing that in the close-packed regime the incident radiation excites a very localized tangential surface plasmon.Comment: 7 pages, 12 figures, to appear in Eur. Phys. J.

    Bosonic versus fermionic pairs of topological spin defects in monolayered high-T_c superconductors

    Get PDF
    The energy associated with bosonic and fermionic pairs of topological spin defects in doped antiferromagnetic quantum spin-1/2 square lattice is estimated within a resonating valence bond scenario, as described by a t-t'-J-like model Hamiltonian, plus a t-perpendicular, responsible of a three-dimensional screening of the electrostatic repulsion within the bosonic pairs. For parameters appropriate for monolayered high-T_c superconductors, both fermionic and bosonic pairs show x^2-y^2 symmetry. We find a critical value of doping such that the energy of the bosonic pairs goes below twice the energy of two fermionic pairs at their Fermi level. This finding could be related to the onset of high-T_c superconductivity.Comment: 10 pages, 6 figures. To be published in Phys. Rev.
    corecore