59,919 research outputs found

    Galaxy Evolution and Star Formation Efficiency in the Last Half of the Universe

    Full text link
    We present the results of a CO(1-0) emission survey with the IRAM 30m of 30 galaxies at moderate redshift (z ~ 0.2-0.6) to explore galaxy evolution and in particular the star formation efficiency, in the redshift range filling the gap between local and very high-z objects. Our detection rate is about 50%. One of the bright objects was mapped at high resolution with the IRAM interferometer, and about 50% of the total emission found in the 27 arcsec (97 kpc) single dish beam is recovered by the interferometer, suggesting the presence of extended emission. The FIR-to-CO luminosity ratio is enhanced, following the increasing trend observed between local and high-z ultra-luminous starbursts.Comment: 6 pages, 5 figures, To appear in the proceedings of "SF2A-2007: Semaine de l'Astrophysique Francaise", (J. Bouvier, A. Chalabaev, and C. Charbonnel eds

    Temperature dependent dynamic and static magnetic response in magnetic tunnel junctions with Permalloy layers

    Full text link
    Ferromagnetic resonance and static magnetic properties of CoFe/Al2O3/CoFe/Py and CoFe/Al2O3/CoFeB/Py magnetic tunnel junctions and of 25nm thick single-layer Permalloy(Py) films have been studied as a function of temperature down to 2K. The temperature dependence of the ferromagnetic resonance excited in the Py layers in magnetic tunnel junctions shows knee-like enhancement of the resonance frequency accompanied by an anomaly in the magnetization near 60K. We attribute the anomalous static and dynamic magnetic response at low temperatures to interface stress induced magnetic reorientation transition at the Py interface which could be influenced by dipolar soft-hard layer coupling through the Al2O3 barrier

    Phenomenology Tools on Cloud Infrastructures using OpenStack

    Get PDF
    We present a new environment for computations in particle physics phenomenology employing recent developments in cloud computing. On this environment users can create and manage "virtual" machines on which the phenomenology codes/tools can be deployed easily in an automated way. We analyze the performance of this environment based on "virtual" machines versus the utilization of "real" physical hardware. In this way we provide a qualitative result for the influence of the host operating system on the performance of a representative set of applications for phenomenology calculations.Comment: 25 pages, 12 figures; information on memory usage included, as well as minor modifications. Version to appear in EPJ

    Clone size distributions in networks of genetic similarity

    Get PDF
    We build networks of genetic similarity in which the nodes are organisms sampled from biological populations. The procedure is illustrated by constructing networks from genetic data of a marine clonal plant. An important feature in the networks is the presence of clone subgraphs, i.e. sets of organisms with identical genotype forming clones. As a first step to understand the dynamics that has shaped these networks, we point up a relationship between a particular degree distribution and the clone size distribution in the populations. We construct a dynamical model for the population dynamics, focussing on the dynamics of the clones, and solve it for the required distributions. Scale free and exponentially decaying forms are obtained depending on parameter values, the first type being obtained when clonal growth is the dominant process. Average distributions are dominated by the power law behavior presented by the fastest replicating populations.Comment: 17 pages, 4 figures. One figure improved and other minor changes. To appear in Physica

    Molecular gas in NUclei of GAlaxies (NUGA) XV. Molecular gas kinematics in the inner 3kpc of NGC6951

    Get PDF
    Within the NUclei of GAlaxies project we have obtained IRAM PdBI and 30m 12CO(1-0) and 12CO(2-1) observations of the spiral galaxy NGC 6951. Previous work shows that there is indirect evidence of gas inflow from 3 kpc down to small radii: a large-scale stellar bar, a prominent starburst ring (r~580 pc) and a LINER/Seyfert 2 nucleus. In this paper we study the gas kinematics as traced by the CO line emission in detail. We quantify the influence of the large-scale stellar bar by constructing an analytical model of the evolution of gas particles in a barred potential. From this model gravitational torques and mass accumulation rates are computed. We compare our model-based gravitational torque results with previous observationally-based ones. The model also shows that the large-scale stellar bar is indeed the dominant force for driving the gas inward, to the starburst ring. Inside the ring itself a nuclear stellar oval might play an important role. Detailed analysis of the CO gas kinematics there shows that emission arises from two co-spatial, but kinematically distinct components at several locations. The main emission component can always be related to the overall bar-driven gas kinematics. The second component exhibits velocities that are larger than expected for gas on stable orbits, has a molecular gas mass of 1.8x10^6Msun, is very likely connected to the nuclear stellar oval, and is consistent with inflowing motion towards the very center. This may form the last link in the chain of gas inflow towards the active galactic nucleus in NGC 6951.Comment: 17 pages, accepted by A&A (17 feb 2011

    Evolutionary and Ecological Trees and Networks

    Get PDF
    Evolutionary relationships between species are usually represented in phylogenies, i.e. evolutionary trees, which are a type of networks. The terminal nodes of these trees represent species, which are made of individuals and populations among which gene flow occurs. This flow can also be represented as a network. In this paper we briefly show some properties of these complex networks of evolutionary and ecological relationships. First, we characterize large scale evolutionary relationships in the Tree of Life by a degree distribution. Second, we represent genetic relationships between individuals of a Mediterranean marine plant, Posidonia oceanica, in terms of a Minimum Spanning Tree. Finally, relationships among plant shoots inside populations are represented as networks of genetic similarity.Comment: 6 pages, 5 figures. To appear in Proceedings of the Medyfinol06 Conferenc

    Phylogenetic inferences of Atelinae (Platyrrhini) based on multi-directional chromosome painting in Brachyteles arachnoides, Ateles paniscus paniscus and Ateles b. marginatus

    Get PDF
    We performed multi-directional chromosome painting in a comparative cytogenetic study of the three Atelinae species Brachyteles arachnoides, Ateles paniscus paniscus and Ateles belzebuth marginatus, in order to reconstruct phylogenetic relationships within this Platyrrhini subfamily. Comparative chromosome maps between these species were established by multi-color fluorescence in situ hybridization ( FISH) employing human, Saguinus oedipus and Lagothrix lagothricha chromosome-specific probes. The three species included in this study and four previously analyzed species from all four Atelinae genera were subjected to a phylogenetic analysis on the basis of a data matrix comprised of 82 discrete chromosome characters. The results confirmed that Atelinae represent a monophyletic clade with a putative ancestral karyotype of 2n = 62 chromosomes. Phylogenetic analysis revealed an evolutionary branching sequence \{Alouatta \{Brachyteles \{Lagothrix and Ateles\}\}\} in Atelinae and \{Ateles belzebuth marginatus \{Ateles paniscus paniscus \{Ateles belzebuth hybridus and Ateles geoffroyi\}\}\} in genus Ateles. The chromosomal data support a re-evaluation of the taxonomic status of Ateles b. hybridus. Copyright (C) 2005 S. Karger AG, Basel
    corecore