52,509 research outputs found
Spectro-astrometry of V1515 Cyg
FU Orionis objects are a class of young stars with important bursts in
luminosity and which show evidence of accretion and ejection activity. It is
generally accepted that they are surrounded by a Keplerian circumstellar disk
and an infalling envelope. The outburst would occurs because of a sudden
increase in the accretion rate. We aim at studying the regions closer to the
central star in order to observe the signs of the accretion/ejection activity.
We present optical observations of the Halpha line using the Integral Field
Spectrograph OASIS, at the William Herschel Telescope, combined with Adaptive
Optics. Since this technique gives the spectral information for both spatial
directions, we carried out a two-dimensional spectro-astrometric study of the
signal. We measured a clear spectro-astrometric signal in the North-South
direction. The cross-correlation between the spectra showed a spatial
distribution in velocity suggestive of scattering by a disk surrounding the
star. This would be one of the few spatial inferences of a disk observed in a
FU Orionis object. However, in order to fully understand the observed
structure, higher angular and spectral resolution observations are required.
V1515 Cyg appears now as an important object to be observed with a new
generation of instruments to increase our knowledge about the disk and outflows
structure in FU Orionis objects
Magnetic behavior of lamellar mnps3 and cdps3 composites with a paramagnetic manganese(iii) macrocyclic guest
IndexaciĂłn: ScieloSix new composites derived from the intercalation of the MPS3 phases (M = MnII, CdIII) with the macrocyclic manganese(III) complex [MnL(H2O)2].NO3(H2O) (LH2 = Schiff base macrocyclic ligand derived from the condensation of 2-hydroxy-5-methy1-1,3-benzene-dicarbaldehyde and 1,2-diamine-benzene) were obtained by two different synthetic procedures: a conventional and a microwave assisted method. The composites [MnL]0.25K0.15Mn0.80 PS3(H2O)~1.0 (1), and [MnL]0.25K0.15Cd 0. 80PS3(H2O)~0.5 (2) were obtained by the conventional method, after stirring a suspension of the corresponding potassium precursor and the macrocyclic complex for two weeks, while [MnL]0.35K0.15Mn0.80 PS3(H2O)~1.0 (3) and [MnL]0.25K0.15Cd 0. 80PS3(H2O)~0.5 (4) after stirring for four weeks at room temperature. Using a microwave assisted reaction permitted to obtain in a shorter period of time as compared with the conventional method, composites [MnL]0.20K0.15Mn0.80 PS3(H2O)~1.0 (5) and [MnL]0.15K0.15Cd 0. 80PS3(H2O)~0.5 (6). All the M = MnII, MnIII composites show a bulk antiferromagnetic behavior. However, the spontaneous magnetization present at low temperature in the potassium precursor K0.40Mn0.80 PS3(H2O)~1.0 is observable in composite [MnL]0.20K0.15Mn0.80 PS3(H2O)~1.0 (5), while it is completely absent in composites [MnL]0.25K0.15Mn0.80 PS3(H2O)~1.0 (1) and [MnL]0.35K0.15Mn0.80 PS3(H2O)~1.0 (3).
Keywords: Intercalation; MPS3 phases; MnIII macrocyclic complex; microwave assisted synthesis; magnetic properties
Electronic Raman Scattering in Twistronic Few-Layer Graphene
We study electronic contribution to the Raman scattering signals of two-,
three- and four-layer graphene with layers at one of the interfaces twisted by
a small angle with respect to each other. We find that the Raman spectra of
these systems feature two peaks produced by van Hove singularities in moir\'{e}
minibands of twistronic graphene, one related to direct hybridization of Dirac
states, and the other resulting from band folding caused by moir\'{e}
superlattice. The positions of both peaks strongly depend on the twist angle,
so that their detection can be used for non-invasive characterization of the
twist, even in hBN-encapsulated structures.Comment: 7 pages (including 4 figures) + 10 pages (3 figures) supplemen
Measuring the magnetic moment density in patterned ultrathin ferromagnets with submicron resolution
We present a new approach to infer the surface density of magnetic moments
in ultrathin ferromagnetic films with perpendicular anisotropy. It relies
on quantitative stray field measurements with an atomic-size magnetometer based
on the nitrogen-vacancy center in diamond. The method is applied to
microstructures patterned in a 1-nm-thick film of CoFeB. We report measurements
of with a few percent uncertainty and a spatial resolution in the range
of nm), an improvement by several orders of magnitude over existing
methods. As an example of application, we measure the modifications of
induced by local irradiation with He ions in an ultrathin ferromagnetic
wire. This method offers a new route to study variations of magnetic properties
at the nanoscale.Comment: 9 pages and 7 figures including main text and Supplemental
Informatio
Implications of a Sub-Threshold Resonance for Stellar Beryllium Depletion
Abundance measurements of the light elements lithium, beryllium, and boron
are playing an increasingly important role in the study of stellar physics.
Because these elements are easily destroyed in stars at temperatures 2--4
million K, the abundances in the surface convective zone are diagnostics of the
star's internal workings. Standard stellar models cannot explain depletion
patterns observed in low mass stars, and so are not accounting for all the
relevant physical processes. These processes have important implications for
stellar evolution and primordial lithium production in big bang
nucleosynthesis. Because beryllium is destroyed at slightly higher temperatures
than lithium, observations of both light elements can differentiate between the
various proposed depletion mechanisms. Unfortunately, the reaction rate for the
main destruction channel, 9Be(p,alpha)6Li, is uncertain. A level in the
compound nucleus 10B is only 25.7 keV below the reaction's energetic threshold.
The angular momentum and parity of this level are not well known; current
estimates indicate that the resonance entrance channel is either s- or d-wave.
We show that an s-wave resonance can easily increase the reaction rate by an
order of magnitude at temperatures of approximately 4 million K. Observations
of sub-solar mass stars can constrain the strength of the resonance, as can
experimental measurements at lab energies lower than 30 keV.Comment: 9 pages, 1 ps figure, uses AASTeX macros and epsfig.sty. Reference
added, typos corrected. To appear in ApJ, 10 March 199
Aquifers survey in the context of source rocks exploitation: from baseline acquisition to long term monitoring.
International audienc
Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence
The turbulent transport of impurity particles in plasma edge turbulence is
investigated. The impurities are modeled as a passive fluid advected by the
electric and polarization drifts, while the ambient plasma turbulence is
modeled using the two-dimensional Hasegawa--Wakatani paradigm for resistive
drift-wave turbulence. The features of the turbulent transport of impurities
are investigated by numerical simulations using a novel code that applies
semi-Lagrangian pseudospectral schemes. The diffusive character of the
turbulent transport of ideal impurities is demonstrated by relative-diffusion
analysis of the evolution of impurity puffs. Additional effects appear for
inertial impurities as a consequence of compressibility. First, the density of
inertial impurities is found to correlate with the vorticity of the electric
drift velocity, that is, impurities cluster in vortices of a precise
orientation determined by the charge of the impurity particles. Second, a
radial pinch scaling linearly with the mass--charge ratio of the impurities is
discovered. Theoretical explanation for these observations is obtained by
analysis of the model equations.Comment: This article has been submitted to Physics of Plasmas. After it is
published, it will be found at http://pop.aip.org/pop
- …