70,838 research outputs found

    Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements

    Full text link
    Residual disorder due to fabrication imperfections has important impact in nanophotonics where it may degrade device performance by increasing radiation loss or spontaneously trap light by Anderson localization. We propose and demonstrate experimentally a method of quantifying the intrinsic amount of disorder in state-of-the-art photonic-crystal waveguides from far-field measurements of the Anderson-localized modes. This is achieved by comparing the spectral range that Anderson localization is observed to numerical simulations and the method offers sensitivity down to ~ 1 nm

    Why are massive O-rich AGB stars in our Galaxy not S-stars?

    Full text link
    We present the main results derived from a chemical analysis carried out on a large sample of galactic O-rich AGB stars using high resolution optical spectroscopy (R~40,000-50,000) with the intention of studying their lithium abundances and/or possible s-process element enrichment. Our chemical analysis shows that some stars are lithium overabundant while others are not. The observed lithium overabundances are interpreted as a clear signature of the activation of the so-called ``Hot Bottom Burning'' (HBB) process in massive galactic O-rich AGB stars, as predicted by the models. However, these stars do not show the zirconium enhancement (taken as a representative for the s-process element enrichment) associated to the third dredge-up phase following thermal pulses. Our results suggest that the more massive O-rich AGB stars in our Galaxy behave differently from those in the Magellanic Clouds, which are both Li- and s-process-rich (S-type stars). Reasons for this unexpected result are discussed. We conclude that metallicity is probably the main responsible for the differences observed and suggest that it may play a more important role than generally assumed in the chemical evolution of AGB stars.Comment: 4 pages, 2 figures, to appear in the proceedings of the conference "Planetary Nebulae as astronomical tools" held in Gdansk, Poland, jun 28/jul 02, 200

    Ventilatory function in young adults and dietary antioxidant intake

    Get PDF
    Artículo de publicación ISIDietary antioxidants may protect against poor ventilatory function. We assessed the relation between ventilatory function and antioxidant components of diet in young Chileans. Forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), and the ratio FEV1/FVC were measured in 1232 adults aged 22-28 years, using a Vitalograph device. Dietary intake was ascertained with a food frequency questionnaire (FFQ) designed for this study, from which nutrient and flavonoid intakes were estimated. Dietary patterns were derived with Principal Component Analysis (PCA). After controlling for potential confounders, dietary intake of total catechins was positively associated with FVC (Regression coefficient (RC) of highest vs. lowest quintile of intake 0.07; 95% CI 0.01 to 0.15; p per trend 0.006). Total fruit intake was related to FVC (RC of highest vs. lowest quintile 0.08; 95% CI 0.003 to 0.15; p per trend 0.02). Intake of omega 3 fatty acids was associated with a higher FEV1 (RC for highest vs. lowest quintile 0.08; 95% CI 0.01 to 0.15 L; p per trend 0.02) and with FVC 0.08 (RC in highest vs. lowest quintile of intake 0.08, 95% CI 0.001 to 0.16; p per trend 0.04). Our results show that fresh fruits, flavonoids, and omega 3 fatty acids may contribute to maintain ventilatory function.Wellcome Trust 059448Z

    Quantum Hall Effect in Graphene with Interface-Induced Spin-Orbit Coupling

    Get PDF
    We consider an effective model for graphene with interface-induced spin-orbit coupling and calculate the quantum Hall effect in the low-energy limit. We perform a systematic analysis of the contribution of the different terms of the effective Hamiltonian to the quantum Hall effect (QHE). By analysing the spin-splitting of the quantum Hall states as a function of magnetic field and gate-voltage, we obtain different scaling laws that can be used to characterise the spin-orbit coupling in experiments. Furthermore, we employ a real-space quantum transport approach to calculate the quantum Hall conductivity and investigate the robustness of the QHE to disorder introduced by hydrogen impurities. For that purpose, we combine first-principles calculations and a genetic algorithm strategy to obtain a graphene-only Hamiltonian that models the impurity

    Brane Inflation from Rotation of D4 Brane

    Full text link
    In this paper, a inflationary model from the rotation of D4-brane is constructed. We show that for a very wide rage of parameter, this model satisfies the observation and find that regarded as inflaton, the rotation of branes may be more nature than the distance between branes. Our model offers a new avenue for brane inflation.Comment: 6 pages, no figure

    Nearest neighbor embedding with different time delays

    Full text link
    A nearest neighbor based selection of time delays for phase space reconstruction is proposed and compared to the standard use of time delayed mutual information. The possibility of using different time delays for consecutive dimensions is considered. A case study of numerically generated solutions of the Lorenz system is used for illustration. The effect of contamination with various levels of additive Gaussian white noise is discussed.Comment: 4 pages, 5 figures, updated to final versio

    Multivariate phase space reconstruction by nearest neighbor embedding with different time delays

    Full text link
    A recently proposed nearest neighbor based selection of time delays for phase space reconstruction is extended to multivariate time series, with an iterative selection of variables and time delays. A case study of numerically generated solutions of the x- and z coordinates of the Lorenz system, and an application to heart rate and respiration data, are used for illustration.Comment: 4 pages, 3 figure

    Stochastic modelling of intermittent scrape-off layer plasma fluctuations

    Full text link
    Single-point measurements of fluctuations in the scrape-off layer of magnetized plasmas are generally found to be dominated by large-amplitude bursts which are associated with radial motion of blob-like structures. A stochastic model for these fluctuations is presented, with the plasma density given by a random sequence of bursts with a fixed wave form. Under very general conditions, this model predicts a parabolic relation between the skewness and kurtosis moments of the plasma fluctuations. In the case of exponentially distributed burst amplitudes and waiting times, the probability density function for the fluctuation amplitudes is shown to be a Gamma distribution with the scale parameter given by the average burst amplitude and the shape parameter given by the ratio of the burst duration and waiting times.Comment: 11 pages, 1 figur
    corecore