72,905 research outputs found
Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements
Residual disorder due to fabrication imperfections has important impact in
nanophotonics where it may degrade device performance by increasing radiation
loss or spontaneously trap light by Anderson localization. We propose and
demonstrate experimentally a method of quantifying the intrinsic amount of
disorder in state-of-the-art photonic-crystal waveguides from far-field
measurements of the Anderson-localized modes. This is achieved by comparing the
spectral range that Anderson localization is observed to numerical simulations
and the method offers sensitivity down to ~ 1 nm
Why are massive O-rich AGB stars in our Galaxy not S-stars?
We present the main results derived from a chemical analysis carried out on a
large sample of galactic O-rich AGB stars using high resolution optical
spectroscopy (R~40,000-50,000) with the intention of studying their lithium
abundances and/or possible s-process element enrichment. Our chemical analysis
shows that some stars are lithium overabundant while others are not. The
observed lithium overabundances are interpreted as a clear signature of the
activation of the so-called ``Hot Bottom Burning'' (HBB) process in massive
galactic O-rich AGB stars, as predicted by the models. However, these stars do
not show the zirconium enhancement (taken as a representative for the s-process
element enrichment) associated to the third dredge-up phase following thermal
pulses. Our results suggest that the more massive O-rich AGB stars in our
Galaxy behave differently from those in the Magellanic Clouds, which are both
Li- and s-process-rich (S-type stars). Reasons for this unexpected result are
discussed. We conclude that metallicity is probably the main responsible for
the differences observed and suggest that it may play a more important role
than generally assumed in the chemical evolution of AGB stars.Comment: 4 pages, 2 figures, to appear in the proceedings of the conference
"Planetary Nebulae as astronomical tools" held in Gdansk, Poland, jun 28/jul
02, 200
Ventilatory function in young adults and dietary antioxidant intake
Artículo de publicación ISIDietary antioxidants may protect against poor ventilatory function. We assessed the relation between ventilatory function and antioxidant components of diet in young Chileans. Forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), and the ratio FEV1/FVC were measured in 1232 adults aged 22-28 years, using a Vitalograph device. Dietary intake was ascertained with a food frequency questionnaire (FFQ) designed for this study, from which nutrient and flavonoid intakes were estimated. Dietary patterns were derived with Principal Component Analysis (PCA). After controlling for potential confounders, dietary intake of total catechins was positively associated with FVC (Regression coefficient (RC) of highest vs. lowest quintile of intake 0.07; 95% CI 0.01 to 0.15; p per trend 0.006). Total fruit intake was related to FVC (RC of highest vs. lowest quintile 0.08; 95% CI 0.003 to 0.15; p per trend 0.02). Intake of omega 3 fatty acids was associated with a higher FEV1 (RC for highest vs. lowest quintile 0.08; 95% CI 0.01 to 0.15 L; p per trend 0.02) and with FVC 0.08 (RC in highest vs. lowest quintile of intake 0.08, 95% CI 0.001 to 0.16; p per trend 0.04). Our results show that fresh fruits, flavonoids, and omega 3 fatty acids may contribute to maintain ventilatory function.Wellcome Trust 059448Z
Quantum Hall Effect in Graphene with Interface-Induced Spin-Orbit Coupling
We consider an effective model for graphene with interface-induced spin-orbit
coupling and calculate the quantum Hall effect in the low-energy limit. We
perform a systematic analysis of the contribution of the different terms of the
effective Hamiltonian to the quantum Hall effect (QHE). By analysing the
spin-splitting of the quantum Hall states as a function of magnetic field and
gate-voltage, we obtain different scaling laws that can be used to characterise
the spin-orbit coupling in experiments. Furthermore, we employ a real-space
quantum transport approach to calculate the quantum Hall conductivity and
investigate the robustness of the QHE to disorder introduced by hydrogen
impurities. For that purpose, we combine first-principles calculations and a
genetic algorithm strategy to obtain a graphene-only Hamiltonian that models
the impurity
Brane Inflation from Rotation of D4 Brane
In this paper, a inflationary model from the rotation of D4-brane is
constructed. We show that for a very wide rage of parameter, this model
satisfies the observation and find that regarded as inflaton, the rotation of
branes may be more nature than the distance between branes. Our model offers a
new avenue for brane inflation.Comment: 6 pages, no figure
Nearest neighbor embedding with different time delays
A nearest neighbor based selection of time delays for phase space
reconstruction is proposed and compared to the standard use of time delayed
mutual information. The possibility of using different time delays for
consecutive dimensions is considered. A case study of numerically generated
solutions of the Lorenz system is used for illustration. The effect of
contamination with various levels of additive Gaussian white noise is
discussed.Comment: 4 pages, 5 figures, updated to final versio
Multivariate phase space reconstruction by nearest neighbor embedding with different time delays
A recently proposed nearest neighbor based selection of time delays for phase
space reconstruction is extended to multivariate time series, with an iterative
selection of variables and time delays. A case study of numerically generated
solutions of the x- and z coordinates of the Lorenz system, and an application
to heart rate and respiration data, are used for illustration.Comment: 4 pages, 3 figure
Stochastic modelling of intermittent scrape-off layer plasma fluctuations
Single-point measurements of fluctuations in the scrape-off layer of
magnetized plasmas are generally found to be dominated by large-amplitude
bursts which are associated with radial motion of blob-like structures. A
stochastic model for these fluctuations is presented, with the plasma density
given by a random sequence of bursts with a fixed wave form. Under very general
conditions, this model predicts a parabolic relation between the skewness and
kurtosis moments of the plasma fluctuations. In the case of exponentially
distributed burst amplitudes and waiting times, the probability density
function for the fluctuation amplitudes is shown to be a Gamma distribution
with the scale parameter given by the average burst amplitude and the shape
parameter given by the ratio of the burst duration and waiting times.Comment: 11 pages, 1 figur
- …