27 research outputs found

    Molecular diagnosis of Theileria and Babesia species infecting cattle in Northern Spain using reverse line blot macroarrays

    Get PDF
    BACKGROUND: Piroplasmosis in cattle is caused by tick-borne haemoprotozoan parasites of the genera Theileria and Babesia. Molecular detection techniques offer higher sensitivity and specificity than microscopy examination methods and serological tests. A reverse line blot (RLB) macroarray that included generic and species-specific probes for Theileria annulata, Theileria buffeli, Babesia bovis, Babesia bigemina, Babesia divergens and Babesia major was used to study the presence and identity of the piroplasm species infecting 263 bovine blood samples from 79 farms, most of them in Northern Spain. Microscopy examination of blood smears and haematology were also performed whenever possible to identify animals with parasitaemia. RESULTS: RLB hybridisation identified infection in 54.0% of the samples, whereas only 28.8% were positive by microscopy examination. The most frequently found species was T. buffeli, present in 42.6% of the samples. T. annulata was found in 22 samples (8.4%) from 12 farms, including 9 farms (14 samples) located in Northern Spain where presence of the vector is not very common. Babesia infections were less frequently detected: B. major was found in 3.0% of the samples, B. bigemina in 2.7%, B. bovis in 2.3% and B. divergens in 1.1%. Mixed infections were detected in 14 samples, accounting for six different combinations of species. CONCLUSION: This is the first report in which B. major and B. divergens have been detected in Spain using molecular identification techniques and the first time that B. bovis has been detected in Northern Spain. The detection of T. annulata in Northern Spain suggests that the distribution of Mediterranean theileriosis might be changing. Samples with positive RLB hybridisation but negative microscopy had haematology values within the normal ranges suggesting that they corresponded to chronic carriers that may serve as reservoirs of the infection. In this sense, sensitive and specific laboratorial tests like RLB that clearly identify the parasite and can detect subclinical infections are essential to establish good control measures

    Bioorthogonal Self-Immolative Linker Based on Grob Fragmentation.

    Get PDF
    A self-immolative bioorthogonal conditionally cleavable linker based on Grob fragmentation is described. It is derived from 1,3-aminocyclohexanols and allows the release of sulfonate-containing compounds in aqueous media. Modulation of the amine pKa promotes fragmentation even at slightly acidic pH, a common feature of several tumor environments. The Grob fragmentation can also occur under physiological conditions in living cells, highlighting the potential bioorthogonal applicability of this reaction

    In vivo biocompatibility testing of nanoparticle-functionalized alginate–chitosan scaffolds for tissue engineering applications

    Get PDF
    Background: There is a strong interest in designing new scaffolds for their potential application in tissue engineering and regenerative medicine. The incorporation of functionalization molecules can lead to the enhancement of scaffold properties, resulting in variations in scaffold compatibility. Therefore, the efficacy of the therapy could be compromised by the foreign body reaction triggered after implantation.Methods: In this study, the biocompatibilities of three scaffolds made from an alginate–chitosan combination and functionalized with gold nanoparticles (AuNp) and alginate-coated gold nanoparticles (AuNp + Alg) were evaluated in a subcutaneous implantation model in Wistar rats. Scaffolds and surrounding tissue were collected at 4-, 7- and 25-day postimplantation and processed for histological analysis and quantification of the expression of genes involved in angiogenesis, macrophage profile, and proinflammatory (IL-1ÎČ and TNFα) and anti-inflammatory (IL-4 and IL-10) cytokines.Results: Histological analysis showed a characteristic foreign body response that resolved 25 days postimplantation. The intensity of the reaction assessed through capsule thickness was similar among groups. Functionalizing the device with AuNp and AuNp + Alg decreased the expression of markers associated with cell death by apoptosis and polymorphonuclear leukocyte recruitment, suggesting increased compatibility with the host tissue. Similarly, the formation of many foreign body giant cells was prevented. Finally, an increased detection of alpha smooth muscle actin was observed, showing the angiogenic properties of the elaborated scaffolds.Conclusion: Our results show that the proposed scaffolds have improved biocompatibility and exhibit promising potential as biomaterials for elaborating tissue engineering constructs

    Bioorthogonal Self-Immolative Linker Based on Grob Fragmentation

    Get PDF
    A self-immolative bioorthogonal conditionally cleavable linker based on Grob fragmentation is described. It is derived from 1,3-aminocyclohexanols and allows the release of sulfonate-containing compounds in aqueous media. Modulation of the amine pKa promotes fragmentation even at slightly acidic pH, a common feature of several tumor environments. The Grob fragmentation can also occur under physiological conditions in living cells, highlighting the potential bioorthogonal applicability of this reaction.We thank the Agencia Estatal de InvestigaciĂłn of Spain (AEI; Grant No. RTI2018-099592−B-C21). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie Grant Agreement No. 675007. M.S.-C. thanks the AsociaciĂłn Española Contra el CĂĄncer AECC (La Rioja) for the predoctoral fellowship. E.J.-M. acknowledges the contract Beatriz Galindo from the Ministry of Universities of Spain.Peer reviewe

    Structure-Guided Approach for the Development of MUC1-Glycopeptide-Based Cancer Vaccines with Predictable Responses

    Get PDF
    Mucin-1 (MUC1) glycopeptides are exceptional candidates for potential cancer vaccines. However, their autoantigenic nature often results in a weak immune response. To overcome this drawback, we carefully engineered synthetic antigens with precise chemical modifications. To be effective and stimulate an anti-MUC1 response, artificial antigens must mimic the conformational dynamics of natural antigens in solution and have an equivalent or higher binding affinity to anti-MUC1 antibodies than their natural counterparts. As a proof of concept, we have developed a glycopeptide that contains noncanonical amino acid (2S,3R)-3-hydroxynorvaline. The unnatural antigen fulfills these two properties and effectively mimics the threonine-derived antigen. On the one hand, conformational analysis in water shows that this surrogate explores a landscape similar to that of the natural variant. On the other hand, the presence of an additional methylene group in the side chain of this analog compared to the threonine residue enhances a CH/π interaction in the antigen/antibody complex. Despite an enthalpy–entropy balance, this synthetic glycopeptide has a binding affinity slightly higher than that of its natural counterpart. When conjugated with gold nanoparticles, the vaccine candidate stimulates the formation of specific anti-MUC1 IgG antibodies in mice and shows efficacy comparable to that of the natural derivative. The antibodies also exhibit cross-reactivity to selectively target, for example, human breast cancer cells. This investigation relied on numerous analytical (e.g., NMR spectroscopy and X-ray crystallography) and biophysical techniques and molecular dynamics simulations to characterize the antigen–antibody interactions. This workflow streamlines the synthetic process, saves time, and reduces the need for extensive, animal-intensive immunization procedures. These advances underscore the promise of structure-based rational design in the advance of cancer vaccine development

    Structure-Guided Approach for the Development of MUC1-Glycopeptide-Based Cancer Vaccines with Predictable Responses

    Get PDF
    Mucin-1(MUC1)glycopeptidesareexceptionalcandidatesforpotentialcancervaccines.However,theirautoantigenicnatureoftenresultsinaweakimmuneresponse.Toovercomethisdrawback,wecarefullyengineeredsyntheticantigenswithprecisechemicalmodifications.Tobeeffectiveandstimulateananti-MUC1response,artificialantigensmustmimictheconforma-tionaldynamicsofnaturalantigensinsolutionandhaveanequivalentorhigherbindingaffinitytoanti-MUC1antibodiesthantheirnaturalcounterparts.Asa proofofconcept,wehavedevelopeda glycopeptidethatcontainsnoncanonicalaminoacid(2S,3R)-3-hydroxynorvaline.Theunnaturalantigenfulfillsthesetwopropertiesandeffectivelymimicsthethreonine-derivedantigen.Ontheonehand,conformationalanalysisinwatershowsthatthissurrogateexploresalandscapesimilartothatofthenaturalvariant.Ontheotherhand,thepresenceofanadditionalmethylenegroupinthesidechainofthisanalogcomparedtothethreonineresidueenhancesa CH/interactionintheantigen/antibodycomplex.Despiteanenthalpyentropybalance,thissyntheticglycopeptidehasabindingaffinityslightlyhigherthanthatofitsnaturalcounterpart.Whenconjugatedwithgoldnanoparticles,thevaccinecandidatestimulatestheformationofspecificanti-MUC1IgGantibodiesinmiceandshowsefficacycomparabletothatofthenaturalderivative.Theantibodiesalsoexhibitcross-reactivitytoselectivelytarget,forexample,humanbreastcancercells.Thisinvestigationreliedonnumerousanalytical(e.g.,NMRspectroscopyandX-raycrystallography)andbiophysicaltechniquesandmoleculardynamicssimulationstocharacterizetheantigenantibodyinteractions.Thisworkflowstreamlinesthesyntheticprocess,savestime,andreducestheneedforextensive,animal-intensiveimmunizationprocedures.Theseadvancesunderscorethepromiseofstructure-basedrationaldesignintheadvanceofcance

    Adrenomedullin and tumour microenvironment

    Get PDF

    Agaricus Mushroom-Enriched Diets Modulate the Microbiota-Gut-Brain Axis and Reduce Brain Oxidative Stress in Mice

    No full text
    Neurodegenerative diseases pose a major problem for developed countries, and stress has been identified as one of the main risk factors in the development of these disorders. Here, we have examined the protective properties against brain oxidative stress of two diets supplemented with 5% (w/w) of Agaricus bisporus (white button mushroom) or Agaricus bisporus brunnescens (Portobello mushroom) in mice. These diets did not modify the weight gain of the animals when compared to those fed with a regular diet, even after feeding on them for 15 weeks. The long-term modification of the microbiota after 12 weeks on the diets was investigated. At the phylum level, there was a large increase of Verrucomicrobia and a reduction of Cyanobacteria associated with the mushroom diets. No changes were observed in the Firmicutes/Bacteroidetes ratio, whose stability is a marker for a healthy diet. At the family level, three groups presented significant variations. These included Akkermansiaceae and Tannerellaceae, which significantly increased with both diets; and Prevotellaceae, which significantly decreased with both diets. These bacteria participate in the generation of microbiota-derived short-chain fatty acids (SCFAs) and provide a link between the microbiota and the brain. Mice subjected to restraint stress showed an upregulation of Il-6, Nox-2, and Hmox-1 expression; a reduction in the enzymatic activities of catalase and superoxide dismutase; and an increase in lipid peroxidation in their brains. All these parameters were significantly prevented by feeding for 3 weeks on the Agaricus-supplemented diets. In summary, the supplementation of a healthy diet with Agaricus mushrooms may significantly contribute to prevent neurodegenerative diseases in the general population

    Adrenomedullin regulates club cell recovery following lung epithelial injury

    No full text
    The equilibrium between lung epithelium damage and recovery in the context of chronic injury is at the basis of numerous lung diseases, including lung cancer and COPD. Understanding the contribution of growth factors and other molecular intermediates to this crosstalk may help in devising new therapeutic approaches. To better understand the contribution of adrenomedullin (AM) to lung homeostasis, we built club cell-specific conditional knockout (KO) mice for AM and subjected them to naphthalene injury. Untreated KO mice had lower levels of club cell 10 KDa protein (CC10) immunoreactivity than their wild type (WT) littermates in both terminal and regular bronchioles. Naphthalene injury resulted in a rapid necrosis of club cells followed by a progressive recovery of the epithelium. Club cells proliferated at higher rates in the KO mice and at 21 days post-injury the club cell coverage of the main bronchioles was higher and more homogeneous than in the WT animals. In conclusion, the paracrine/autocrine influence of AM in club cells subtly modulates their proliferation and spreading kinetics during lung epithelium recovery
    corecore