28 research outputs found

    Biomarker Profiling of Microbial Mats in the Geothermal Band of Cerro Caliente, Deception Island (Antarctica): Life at the Edge of Heat and Cold

    Get PDF
    © MarĂ­a Ángeles Lezcano et al. 2019.Substrate–atmosphere interfaces in Antarctic geothermal environments are hot–cold regions that constitute thin habitable niches for microorganisms with possible counterparts in ancient Mars. Cerro Caliente hill in Deception Island (active volcano in the South Shetland Islands) is affected by ascending hydrothermal fluids that form a band of warm substrates buffered by low air temperatures. We investigated the influence of temperature on the community structure and metabolism of three microbial mats collected along the geothermal band of Cerro Caliente registering 88°C, 8°C, and 2°C at the time of collection. High-throughput sequencing of small subunit ribosomal ribonucleic acid (SSU rRNA) genes and Life Detector Chip (LDChip) microarray immunoassays revealed different bacterial, archaeal, and eukaryotic composition in the three mats. The mat at 88°C showed the less diverse microbial community and a higher proportion of thermophiles (e.g., Thermales). In contrast, microbial communities in the mats at 2°C and 8°C showed relatively higher diversity and higher proportion of psychrophiles (e.g., Flavobacteriales). Despite this overall association, similar microbial structures at the phylum level (particularly the presence of Cyanobacteria) and certain hot- and cold-tolerant microorganisms were identified in the three mats. Daily thermal oscillations recorded in the substrate over the year (4.5–76°C) may explain the coexistence of microbial fingerprints with different thermal tolerances. Stable isotope composition also revealed metabolic differences among the microbial mats. Carbon isotopic ratios suggested the Calvin–Benson–Bassham cycle as the major pathway for carbon dioxide fixation in the mats at 2°C and 8°C, and the reductive tricarboxylic acid cycle and/or the 3-hydroxypropionate bicycle for the mat at 88°C, indicating different metabolisms as a function of the prevailing temperature of each mat. The comprehensive biomarker profile on the three microbial mats from Cerro Caliente contributes to unravel the diversity, composition, and metabolism in geothermal polar sites and highlights the relevance of geothermal-cold environments to create habitable niches with interest in other planetary environments.This study has been funded by the Spanish Research Agency (AEI) from the Ministry of Science Innovation and Universities and the European FEDER Grants Nos. ESP2015-69540-R, RYC2014-19446, and CGL2015-74254-JIN; the AEI Project No. MDM-2017-0737 Unidad de Excelencia ‘‘MarıŽa de Maeztu,’’ and the European Research Council Starting Grant (ERC StG) No. 307496. M.AÂŽ . Lezcano and M.AÂŽ . FernĂĄndez MartĂ­nez were supported by a postdoctoral fellowship by the Youth Employment Initiative from the European Union and implanted in Comunidad de Madrid

    Prokaryotic Community Structure and Metabolisms in Shallow Subsurface of Atacama Desert Playas and Alluvial Fans After Heavy Rains: Repairing and Preparing for Next Dry Period

    Get PDF
    The Atacama Desert, the oldest and driest desert on Earth, displays significant rains only once per decade. To investigate how microbial communities take advantage of these sporadic wet events, we carried out a geomicrobiological study a few days after a heavy rain event in 2015. Different physicochemical and microbial community analyses were conducted on samples collected from playas and an alluvial fan from surface, 10, 20, 50, and 80 cm depth. Gravimetric moisture content peaks were measured in 10 and 20 cm depth samples (from 1.65 to 4.1% w/w maximum values) while, in general, main anions such as chloride, nitrate, and sulfate concentrations increased with depth, with maximum values of 13–1,125; 168–10,109; and 9,904–30,952 ppm, respectively. Small organic anions such as formate and acetate had maximum concentrations from 2.61 to 3.44 ppm and 6.73 to 28.75 ppm, respectively. Microbial diversity inferred from DNA analysis showed Actinobacteria and Alphaproteobacteria as the most abundant and widespread bacterial taxa among the samples, followed by Chloroflexi and Firmicutes at specific sites. Archaea were mainly dominated by Nitrososphaerales, Methanobacteria, with the detection of other groups such as Halobacteria. Metaproteomics showed a high and even distribution of proteins involved in primary metabolic processes such as energy production and biosynthetic pathways, and a limited but remarkable presence of proteins related to resistance to environmental stressors such as radiation, oxidation, or desiccation. The results indicated that extra humidity in the system allows the microbial community to repair, and prepare for the upcoming hyperarid period. Additionally, it supplies biomarkers to the medium whose preservation potential could be high under strong desiccation conditions and relevant for planetary exploration.This work was funded by the Spanish Ministerio de Economía y Competitividad/Fondo Europeo de Desarrollo Regional Grants no. ESP2014-58494-R, ESP2015-69540-R (MINECO/FEDER), ESP2017-89053-C2-2-P, and “María de Maeztu” program project no. MDM-2017-0737; the NASA ASTEP “Life in the Atacama (LITA)” project no. NNX11AJ87G, and NASA Astrobiology Institute Colaborative Agreement 7 (CAN-7) project No. NNX15BB01A. MF-M had a posdoctoral grant from the Comunidad de Madrid/European Union YEI program, and IG-C had a FPI grant from the Spanish Ministry of Economy and Competitivity (MINECO).With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (MDM-2017-0737).Peer reviewe

    Geomicrobiological heterogeneity of lithic habitats in the extreme environment of Antarctic nunataks: a potential early Mars analog

    Get PDF
    Nunataks are permanent ice-free rocky peaks that project above ice caps in polar regions, thus being exposed to extreme climatic conditions throughout the year. They undergo extremely low temperatures and scarcity of liquid water in winter, while receiving high incident and reflected (albedo) UVA-B radiation in summer. Here, we investigate the geomicrobiology of the permanently exposed lithic substrates of nunataks from Livingston Island (South Shetlands, Antarctic Peninsula), with focus on prokaryotic community structure and their main metabolic traits. Contrarily to first hypothesis, an extensive sampling based on different gradients and multianalytical approaches demonstrated significant differences for most geomicrobiological parameters between the bedrock, soil, and loose rock substrates, which overlapped any other regional variation. Brevibacillus genus dominated on bedrock and soil substrates, while loose rocks contained a diverse microbial community, including Actinobacteria, Alphaproteobacteria and abundant Cyanobacteria inhabiting the milder and diverse microhabitats within. Archaea, a domain never described before in similar Antarctic environments, were also consistently found in the three substrates, but being more abundant and potentially more active in soils. Stable isotopic ratios of total carbon (ή 13C) and nitrogen (ή 15N), soluble anions concentrations, and the detection of proteins involved in key metabolisms via the Life Detector Chip (LDChip), suggest that microbial primary production has a pivotal role in nutrient cycling at these exposed areas with limited deposition of nutrients. Detection of stress-resistance proteins, such as molecular chaperons, suggests microbial molecular adaptation mechanisms to cope with these harsh conditions. Since early Mars may have encompassed analogous environmental conditions as the ones found in these Antarctic nunataks, our study also contributes to the understanding of the metabolic features and biomarker profiles of a potential Martian microbiota, as well as the use of LDChip in future life detection missions.This project has been funded by the Spanish Ministry of Science and Innovation (MICINN)/European Regional Development Fund (FEDER) project no. RTI2018-094368-B-I00; the European Research Council Consolidator grant no. 818602; and the Spanish State Research Agency (AEI) project no. MDM-2017-0737, Unidad de Excelencia “María de Maeztu” to Centro de Astrobiología

    Prokaryotic and viral community of the sulfate‐rich crust from Peñahueca ephemeral lake, an astrobiology analogue

    Get PDF
    Peñahueca is an athalassohaline hypersaline inland ephemeral lake originated under semiarid conditions in the central Iberian Peninsula (Spain). Its chemical composition makes it extreme for microbial life as well as a terrestrial analogue of other planetary environments. To investigate the persistence of microbial life associated with sulfate‐rich crusts, we applied cultivation‐independent methods (optical and electron microscopy, 16S rRNA gene profiling and metagenomics) to describe the prokaryotic community and its associated viruses. The diversity for Bacteria was very low and was vastly dominated by endospore formers related to Pontibacillus marinus of the Firmicutes phylum. The archaeal assemblage was more diverse and included taxa related to those normally found in hypersaline environments. Several ‘metagenome assembled genomes’ were recovered, corresponding to new species of Pontibacillus, several species from the Halobacteria and one new member of the Nanohaloarchaeota. The viral assemblage, although composed of the morphotypes typical of high salt systems, showed little similarity to previously isolated/reconstructed halophages. Several putative prophages of Pontibacillus and haloarchaeal hosts were identified. Remarkably, the Peñahueca sulfate‐rich metagenome contained CRISPR‐associated proteins and repetitions which were over 10‐fold higher than in most hypersaline systems analysed so far.This research was supported by the Spanish Ministry of Economy projects CLG2015_66686-C3-1 (to RRM) CLG2015_66686-C3-3 (to JA), CGL2015-66455-R (to MAGC, MESM, JPRA), AYA2011-24803 and ESP2015-69540-R (to VP) which were also supported by the European Regional Development Fund and the MDM-2017-0737 Unidad de Excelencia “MarĂ­a de Maeztu”- Centro de AstrobiologĂ­a (INTA-CSIC)

    SOLID2: An Antibody Array-Based Life-Detector Instrument in a Mars Drilling Simulation Experiment (MARTE)

    Get PDF
    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the RĂ­o Tinto area), and extracts from biofilms and other natural samples from the RĂ­o Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.The work was funded by the Spanish Ministerio de EducaciĂłn y Ciencia (ESP2004-05008), the Centro de AstrobiologĂ­a (CAB), the Instituto Nacional de TĂ©cnica Aeroespacial (INTA), and by the National Aeronautics and Space Administration (NASA) Astrobiology Science and Technology for Exploring Planets (ASTEP) program under NRA 02-OSS-01.Peer reviewe

    Coupled C, H, N, S and Fe biogeochemical cycles operating in the continental deep subsurface of the Iberian Pyrite Belt

    Full text link
    Microbial activity is a major contributor to the biogeochemical cycles that make up the life support system of planet Earth. A 613 m deep geomicrobiological perforation and a systematic multi-analytical characterization revealed an unexpected diversity associated with the rock matrix microbiome that operates in the subsurface of the Iberian Pyrite Belt (IPB). Members of 1 class and 16 genera were deemed the most representative microorganisms of the IPB deep subsurface and selected for a deeper analysis. The use of fluorescence in situ hybridization allowed not only the identification of microorganisms but also the detection of novel activities in the subsurface such as anaerobic ammonium oxidation (ANAMMOX) and anaerobic methane oxidation, the co-occurrence of microorganisms able to maintain complementary metabolic activities and the existence of biofilms. The use of enrichment cultures sensed the presence of five different complementary metabolic activities along the length of the borehole and isolated 29 bacterial species. Genomic analysis of nine isolates identified the genes involved in the complete operation of the light-independent coupled C, H, N, S and Fe biogeochemical cycles. This study revealed the importance of nitrate reduction microorganisms in the oxidation of iron in the anoxic conditions existing in the subsurface of the IPBFP7 Ideas: European Research Council, Grant/Award Number: ERC Advanced Grant #250-35

    Microbial Biomarker Transition in High-Altitude Sinter Mounds From El Tatio (Chile) Through Different Stages of Hydrothermal Activity

    Get PDF
    Geothermal springs support microbial communities at elevated temperatures in an ecosystem with high preservation potential that makes them interesting analogs for early evolution of the biogeosphere. The El Tatio geysers field in the Atacama Desert has astrobiological relevance due to the unique occurrence of geothermal features with steep hydrothermal gradients in an otherwise high altitude, hyper-arid environment. We present here results of our multidisciplinary field and molecular study of biogeochemical evidence for habitability and preservation in silica sinter at El Tatio. We sampled three morphologically similar geyser mounds characterized by differences in water activity (i.e., episodic liquid water, steam, and inactive geyser lacking hydrothermal activity). Multiple approaches were employed to determine (past and present) biological signatures and dominant metabolism. Lipid biomarkers indicated relative abundance of thermophiles (dicarboxylic acids) and sulfate reducing bacteria (branched carboxylic acids) in the sinter collected from the liquid water mound; photosynthetic microorganisms such as cyanobacteria (alkanes and isoprenoids) in the steam sinter mound; and archaea (squalane and crocetane) as well as purple sulfur bacteria (cyclopropyl acids) in the dry sinter from the inactive geyser. The three sinter structures preserved biosignatures representative of primary (thermophilic) and secondary (including endoliths and environmental contaminants) microbial communities. Sequencing of environmental 16S rRNA genes and immuno-assays generally corroborated the lipid-based microbial identification. The multiplex immunoassays and the compound-specific isotopic analysis of carboxylic acids, alkanols, and alkanes indicated that the principal microbial pathway for carbon fixation in the three sinter mounds was through the Calvin cycle, with a relative larger contribution of the reductive acetyl-CoA pathway in the dry system. Other inferred metabolic traits varied from the liquid mound (iron and sulfur chemistry), to the steam mound (nitrogen cycle), to the dry mound (perchlorate reduction). The combined results revealed different stages of colonization that reflect differences in the lifetime of the mounds, where primary communities dominated the biosignatures preserved in sinters from the still active geysers (liquid and steam mounds), in contrast to the surviving metabolisms and microbial communities at the end of lifetime of the inactive geothermal mound

    Microbiology and Nitrogen Cycle in the Benthic Sediments of a Glacial Oligotrophic Deep Andean Lake as Analog of Ancient Martian Lake-Beds

    Get PDF
    Potential benthic habitats of early Mars lakes, probably oligotrophic, could range from hydrothermal to cold sediments. Dynamic processes in the water column (such as turbidity or UV penetration) as well as in the benthic bed (temperature gradients, turbation, or sedimentation rate) contribute to supply nutrients to a potential microbial ecosystem. High altitude, oligotrophic, and deep Andean lakes with active deglaciation processes and recent or past volcanic activity are natural models to assess the feasibility of life in other planetary lake/ocean environments and to develop technology for their exploration. We sampled the benthic sediments (down to 269 m depth) of the oligotrophic lake Laguna Negra (Central Andes, Chile) to investigate its ecosystem through geochemical, biomarker profiling, and molecular ecology studies. The chemistry of the benthic water was similar to the rest of the water column, except for variable amounts of ammonium (up to 2.8 ppm) and nitrate (up to 0.13 ppm). A life detector chip with a 300-antibody microarray revealed the presence of biomass in the form of exopolysaccharides and other microbial markers associated to several phylogenetic groups and potential microaerobic and anaerobic metabolisms such as nitrate reduction. DNA analyses showed that 27% of the Archaea sequences corresponded to a group of ammonia-oxidizing archaea (AOA) similar (97%) to Nitrosopumilus spp. and Nitrosoarchaeum spp. (Thaumarchaeota), and 4% of Bacteria sequences to nitrite-oxidizing bacteria from the Nitrospira genus, suggesting a coupling between ammonia and nitrite oxidation. Mesocosm experiments with the specific AOA inhibitor 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) demonstrated an AOA-associated ammonia oxidation activity with the simultaneous accumulation of nitrate and sulfate. The results showed a rich benthic microbial community dominated by microaerobic and anaerobic metabolisms thriving under aphotic, low temperature (4°C), and relatively high pressure, that might be a suitable terrestrial analog of other planetary settings

    The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission

    Get PDF
    86 pags, 49 figs, 24 tabsNASA's Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∌1.5 m and ∌0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.This work has been funded by the Spanish Ministry of Economy and Competitiveness, through the projects No. ESP2014-54256-C4-1-R (also -2-R, -3-R and -4-R) and AYA2015-65041-P; Ministry of Science, Innovation and Universities, projects No. ESP2016-79612-C3-1-R (also -2-R and -3-R), ESP2016-80320-C2-1-R, RTI2018-098728-B-C31 (also -C32 and -C33) and RTI2018-099825-B-C31; Instituto Nacional de Tecnica Aeroespacial; Ministry of Science and Innovation's Centre for the Development of Industrial Technology; Grupos Gobierno Vasco IT1366-19; and European Research Council Consolidator Grant no 818602.Peer reviewe
    corecore