117 research outputs found
Computability of the causal boundary by using isocausality
Recently, a new viewpoint on the classical c-boundary in Mathematical
Relativity has been developed, the relations of this boundary with the
conformal one and other classical boundaries have been analyzed, and its
computation in some classes of spacetimes, as the standard stationary ones, has
been carried out.
In the present paper, we consider the notion of isocausality given by
Garc\'ia-Parrado and Senovilla, and introduce a framework to carry out
isocausal comparisons with standard stationary spacetimes. As a consequence,
the qualitative behavior of the c-boundary (at the three levels: point set,
chronology and topology) of a wide class of spacetimes, is obtained.Comment: 44 pages, 5 Figures, latex. Version with minor changes and the
inclusion of Figure
Isocausal spacetimes may have different causal boundaries
We construct an example which shows that two isocausal spacetimes, in the
sense introduced by Garc\'ia-Parrado and Senovilla, may have c-boundaries which
are not equal (more precisely, not equivalent, as no bijection between the
completions can preserve all the binary relations induced by causality). This
example also suggests that isocausality can be useful for the understanding and
computation of the c-boundary.Comment: Minor modifications, including the title, which matches now with the
published version. 12 pages, 3 figure
A new special class of Petrov type D vacuum space-times in dimension five
Using extensions of the Newman-Penrose and Geroch-Held-Penrose formalisms to
five dimensions, we invariantly classify all Petrov type vacuum solutions
for which the Riemann tensor is isotropic in a plane orthogonal to a pair of
Weyl alligned null directionsComment: 4 pages, 1 table, no figures. Contribution to the proceedings of the
Spanish Relativity Meeting 2010 held in Granada (Spain
On the causal properties of warped product spacetimes
It is shown that the warped product spacetime P=M *_f H, where H is a
complete Riemannian manifold, and the original spacetime M share necessarily
the same causality properties, the only exceptions being the properties of
causal continuity and causal simplicity which present some subtleties. For
instance, it is shown that if diamH=+\infty, the direct product spacetime P=M*H
is causally simple if and only if (M,g) is causally simple, the Lorentzian
distance on M is continuous and any two causally related events at finite
distance are connected by a maximizing geodesic. Similar conditions are found
for the causal continuity property. Some new results concerning the behavior of
the Lorentzian distance on distinguishing, causally continuous, and causally
simple spacetimes are obtained. Finally, a formula which gives the Lorentzian
distance on the direct product in terms of the distances on the two factors
(M,g) and (H,h) is obtained.Comment: 22 pages, 2 figures, uses the package psfra
Causal symmetries
Based on the recent work \cite{PII} we put forward a new type of
transformation for Lorentzian manifolds characterized by mapping every causal
future-directed vector onto a causal future-directed vector. The set of all
such transformations, which we call causal symmetries, has the structure of a
submonoid which contains as its maximal subgroup the set of conformal
transformations. We find the necessary and sufficient conditions for a vector
field \xiv to be the infinitesimal generator of a one-parameter submonoid of
pure causal symmetries. We speculate about possible applications to gravitation
theory by means of some relevant examples.Comment: LaTeX2e file with CQG templates. 8 pages and no figures. Submitted to
Classical and Quantum gravit
A Note on Non-compact Cauchy surface
It is shown that if a space-time has non-compact Cauchy surface, then its
topological, differentiable, and causal structure are completely determined by
a class of compact subsets of its Cauchy surface. Since causal structure
determines its topological, differentiable, and conformal structure of
space-time, this gives a natural way to encode the corresponding structures
into its Cauchy surface
Initial data sets for the Schwarzschild spacetime
A characterisation of initial data sets for the Schwarzschild spacetime is
provided. This characterisation is obtained by performing a 3+1 decomposition
of a certain invariant characterisation of the Schwarzschild spacetime given in
terms of concomitants of the Weyl tensor. This procedure renders a set of
necessary conditions --which can be written in terms of the electric and
magnetic parts of the Weyl tensor and their concomitants-- for an initial data
set to be a Schwarzschild initial data set. Our approach also provides a
formula for a static Killing initial data set candidate --a KID candidate.
Sufficient conditions for an initial data set to be a Schwarzschild initial
data set are obtained by supplementing the necessary conditions with the
requirement that the initial data set possesses a stationary Killing initial
data set of the form given by our KID candidate. Thus, we obtain an algorithmic
procedure of checking whether a given initial data set is Schwarzschildean or
not.Comment: 16 page
Petrov D vacuum spaces revisited: Identities and Invariant Classification
For Petrov D vacuum spaces, two simple identities are rederived and some new
identities are obtained, in a manageable form, by a systematic and transparent
analysis using the GHP formalism. This gives a complete involutive set of
tables for the four GHP derivatives on each of the four GHP spin coefficients
and the one Weyl tensor component. It follows directly from these results that
the theoretical upper bound on the order of covariant differentiation of the
Riemann tensor required for a Karlhede classification of these spaces is
reduced to two.Comment: Proof about the Karlhede upper bound improved and discussion of case
IIIA re-written. Acknowledgments section expanded. To appear in Classical and
Quantum Gravit
Bi-conformal vector fields and their applications
We introduce the concept of bi-conformal transformation, as a generalization
of conformal ones, by allowing two orthogonal parts of a manifold with metric
\G to be scaled by different conformal factors. In particular, we study their
infinitesimal version, called bi-conformal vector fields. We show the
differential conditions characterizing them in terms of a "square root" of the
metric, or equivalently of two complementary orthogonal projectors. Keeping
these fixed, the set of bi-conformal vector fields is a Lie algebra which can
be finite or infinite dimensional according to the dimensionality of the
projectors. We determine (i) when an infinite-dimensional case is feasible and
its properties, and (ii) a normal system for the generators in the
finite-dimensional case. Its integrability conditions are also analyzed, which
in particular provides the maximum number of linearly independent solutions. We
identify the corresponding maximal spaces, and show a necessary geometric
condition for a metric tensor to be a double-twisted product. More general
``breakable'' spaces are briefly considered. Many known symmetries are
included, such as conformal Killing vectors, Kerr-Schild vector fields,
kinematic self-similarity, causal symmetries, and rigid motions.Comment: Replaced version with some changes in the terminology and a new
theorem. To appear in Classical and Quantum Gravit
- âŠ