1,237 research outputs found

    Forma: Force reconstruction via maximum-likelihood-estimator analysis

    Get PDF
    We propose an algorithm to retrieve the conservative and non-conservative components of a force field acting on a Brownian particle from the analysis of its displacements with important advantages over established techniques

    FORMA and BEFORE: Expanding applications of optical tweezers

    Get PDF
    We introduce two methods based on statistical inference to calibrate optical tweezers. Both outperform well-established methods and cover a broader application field, including non-conservative force fields and out of equilibrium systems

    El sistema del interferón tipo I protege a juveniles de lenguado senegalés (Solea senegalensis) frente a la infección por VHSV

    Get PDF
    El lenguado senegalés (Solea senegalensis) es susceptible a la infección por el Virus de la Septicemia Hemorrágica Viral (VHSV) bajo condiciones experimentales. El objetivo de este trabajo es determinar el papel del sistema del interferón tipo I de lenguado frente a las infecciones por VHSV. Para llevar a cabo este objetivo se realizó un ensayo en el que el sistema del IFN I de juveniles de lenguado se estimuló con poli I:C. Trascurridas 24 h estos mismos animales se inocularon con una dosis letal de un aislado de VHSV patógeno para lenguado. Los controles utilizados fueron: (I) animales inoculados con VHSV sin previa estimulación con poli I:C, (II) animales inoculados sólo con medio L15 y (III) animales inoculados únicamente con poli I:C.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Vortex nucleation as a case study of symmetry breaking in quantum systems

    Full text link
    Mean-field methods are a very powerful tool for investigating weakly interacting many-body systems in many branches of physics. In particular, they describe with excellent accuracy trapped Bose-Einstein condensates. A generic, but difficult question concerns the relation between the symmetry properties of the true many-body state and its mean-field approximation. Here, we address this question by considering, theoretically, vortex nucleation in a rotating Bose-Einstein condensate. A slow sweep of the rotation frequency changes the state of the system from being at rest to the one containing one vortex. Within the mean-field framework, the jump in symmetry occurs through a turbulent phase around a certain critical frequency. The exact many-body ground state at the critical frequency exhibits strong correlations and entanglement. We believe that this constitutes a paradigm example of symmetry breaking in - or change of the order parameter of - quantum many-body systems in the course of adiabatic evolution.Comment: Minor change

    FIC/FEM formulation with matrix stabilizing terms for incompressible flows at low and high Reynolds numbers

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-006-0060-yWe present a general formulation for incompressible fluid flow analysis using the finite element method. The necessary stabilization for dealing with convective effects and the incompressibility condition are introduced via the Finite Calculus method using a matrix form of the stabilization parameters. This allows to model a wide range of fluid flow problems for low and high Reynolds numbers flows without introducing a turbulence model. Examples of application to the analysis of incompressible flows with moderate and large Reynolds numbers are presented.Peer ReviewedPostprint (author's final draft

    LNCS

    Get PDF
    A controller is a device that interacts with a plant. At each time point,it reads the plant’s state and issues commands with the goal that the plant oper-ates optimally. Constructing optimal controllers is a fundamental and challengingproblem. Machine learning techniques have recently been successfully applied totrain controllers, yet they have limitations. Learned controllers are monolithic andhard to reason about. In particular, it is difficult to add features without retraining,to guarantee any level of performance, and to achieve acceptable performancewhen encountering untrained scenarios. These limitations can be addressed bydeploying quantitative run-timeshieldsthat serve as a proxy for the controller.At each time point, the shield reads the command issued by the controller andmay choose to alter it before passing it on to the plant. We show how optimalshields that interfere as little as possible while guaranteeing a desired level ofcontroller performance, can be generated systematically and automatically usingreactive synthesis. First, we abstract the plant by building a stochastic model.Second, we consider the learned controller to be a black box. Third, we mea-surecontroller performanceandshield interferenceby two quantitative run-timemeasures that are formally defined using weighted automata. Then, the problemof constructing a shield that guarantees maximal performance with minimal inter-ference is the problem of finding an optimal strategy in a stochastic2-player game“controller versus shield” played on the abstract state space of the plant with aquantitative objective obtained from combining the performance and interferencemeasures. We illustrate the effectiveness of our approach by automatically con-structing lightweight shields for learned traffic-light controllers in various roadnetworks. The shields we generate avoid liveness bugs, improve controller per-formance in untrained and changing traffic situations, and add features to learnedcontrollers, such as giving priority to emergency vehicles

    Vortices in polariton OPO superfluids

    Get PDF
    This chapter reviews the occurrence of quantised vortices in polariton fluids, primarily when polaritons are driven in the optical parametric oscillator (OPO) regime. We first review the OPO physics, together with both its analytical and numerical modelling, the latter being necessary for the description of finite size systems. Pattern formation is typical in systems driven away from equilibrium. Similarly, we find that uniform OPO solutions can be unstable to the spontaneous formation of quantised vortices. However, metastable vortices can only be injected externally into an otherwise stable symmetric state, and their persistence is due to the OPO superfluid properties. We discuss how the currents charactering an OPO play a crucial role in the occurrence and dynamics of both metastable and spontaneous vortices.Comment: 40 pages, 16 figure
    corecore