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Abstract. A controller is a device that interacts with a plant. At each time point,
it reads the plant’s state and issues commands with the goal that the plant oper-
ates optimally. Constructing optimal controllers is a fundamental and challenging
problem. Machine learning techniques have recently been successfully applied to
train controllers, yet they have limitations. Learned controllers are monolithic and
hard to reason about. In particular, it is difficult to add features without retraining,
to guarantee any level of performance, and to achieve acceptable performance
when encountering untrained scenarios. These limitations can be addressed by
deploying quantitative run-time shields that serve as a proxy for the controller.
At each time point, the shield reads the command issued by the controller and
may choose to alter it before passing it on to the plant. We show how optimal
shields that interfere as little as possible while guaranteeing a desired level of
controller performance, can be generated systematically and automatically using
reactive synthesis. First, we abstract the plant by building a stochastic model.
Second, we consider the learned controller to be a black box. Third, we mea-
sure controller performance and shield interference by two quantitative run-time
measures that are formally defined using weighted automata. Then, the problem
of constructing a shield that guarantees maximal performance with minimal inter-
ference is the problem of finding an optimal strategy in a stochastic 2-player game
“controller versus shield” played on the abstract state space of the plant with a
quantitative objective obtained from combining the performance and interference
measures. We illustrate the effectiveness of our approach by automatically con-
structing lightweight shields for learned traffic-light controllers in various road
networks. The shields we generate avoid liveness bugs, improve controller per-
formance in untrained and changing traffic situations, and add features to learned
controllers, such as giving priority to emergency vehicles.

1 Introduction

The controller synthesis problem is a fundamental problem that is widely studied by
different communities [42,44]. A controller is a device that interacts with a plant. In
each point in time it reads the plant’s state, e.g., given by sensor reading, and issues
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a command based on the state. The controller should guarantee that the plant operates
correctly or optimally with respect to some given specification. As a running example,
we consider a traffic light controller for a road intersection (see Fig. 1). The state of the
plant refers to the state of the roads leading to the junction; namely, the positions of the
cars, their speeds, their sizes, etc. A controller command consists of a light configuration
for the junction in the next time frame. Specifications can either be qualitative, e.g.,
“it should never be the case that a road with an empty queue gets a green light”, or
quantitative, e.g., “the cost of a controller is the average waiting times of the cars in the
junction”.

Fig. 1. On the left, a concrete state depicted in the traffic simulator SUMO. On the right, we depict
the corresponding abstract state with queues cut off at k = 5, and some outgoing transitions.
Upon issuing action North-South, a car is evicted from each of the North-South queues. Then,
we choose uniformly at random, out of the 16 possible options, the incoming cars to the queues,
update the state, and cutoff the queues at k (e.g., when a car enters from East, the queue stays 5).

A challenge in controller synthesis is that, since the number of possible plant read-
ings is huge, it is computationally demanding to find an optimal command, given a
plant state. Machine learning is a prominent approach to make decisions based on large
amounts of collected data [28,37]. It is widely successful in practice and takes an inte-
gral part in the design process of various systems. Machine learning has been suc-
cessfully applied to train controllers [15,33,34] and specifically controllers for traffic
control [20,35,39].

A shortcoming of machine-learning techniques is that the controllers that are pro-
duced are black-box devices that are hard to reason about and modify without a com-
plete re-training. It is thus challenging, for example, to obtain worst-case guarantees
about the controller, which is particularly important in safety-critical settings. Attempts
to address this problem come from both the formal methods community [46], where
verification of learned systems is extensively studied [24,29], and the machine-learning
community, where guarantees are added during the training process using reward engi-
neering [13,18] or by modifying the exploration process [11,19,38]. Both approaches
require expertise in the respective field and suffer from limitations such as scalability for
the first, and intricacy and robustness issues, for the second. Moreover, both techniques
were mostly studied for safety properties.

Another shortcoming of machine-learning techniques is that they require expertise
and a fine-tuning of parameters. It is difficult, for example, to train controllers that are
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robust to plant behaviors, e.g., a controller that has been trained on uniform traffic con-
gestion meeting rush-hour traffic, which can be significantly different and can cause
poor performance. Also, it is challenging to add features to a controller without retrain-
ing, which is both costly and time consuming. These can include permanent features,
e.g., priority to public transport, or temporary changes, e.g., changes due to an accident
or construction. Again, since the training process is intricate, adding features during
training can have unexpected effects.

In this work, we use quantitative shields to deal with the limitations of learned or
any other black-box controllers. A shield serves as a proxy between the controller and
the plant. In each point in time, as before, the controller reads the state of the plant
and issues a command. Rather than directly feeding the command to the plant, the
shield first reads it along with an abstract plant state. The shield can then choose to
keep the controller’s command or alter it, before issuing the command to the plant. The
concept of shields was first introduced in [30], where shields for safety properties were
considered and with a qualitative notion of interference: a shield is only allowed to
interfere when a controller error occurs, which is only well-defined when considering
safety properties. We elaborate on other shield-like approaches in the Sect. 1.1.

Our goal is to automatically synthesize shields that optimize quantitative measures
for black-box controllers. We are interested in synthesizing lightweight shields. We
assume that the controller performs well on average, but has no worst-case guarantees.
When combining the shield and the controller, intuitively, the controller should be active
for the majority of the time and the shield intervenes only when it is required. We
formalize the plant behavior as well as the interference cost using quantitative measures.
Unlike safety objectives, where it is clear when a shield must interfere, with quantitative
objectives, a non-interference typically does not have a devastating effect. It is thus
challenging to decide, at each time point, whether the shield should interfere or not; the
shield needs to balance the cost of interfering with the decrease in performance of not
interfering. Automatic synthesis of shields is thus natural in this setting.

We elaborate on the two quantitative measures we define. The interaction between
the plant, controller, and shield gives rise to an infinite sequence over C ×Γ ×Γ , where
C is a set of plant states and Γ is a set of allowed actions. A triple 〈c, γ1, γ2〉 means
that the plant is in state c, the controller issues command γ1, and the shield (possibly)
alters it to γ2. We use weighted automata to assign costs to infinite traces, which have
proven to be a convenient, flexible, and robust quantitative specification language [14].
Our behavioral score measures the performance of the plant and it is formally given by
a weighted automaton that assigns scores to traces over C ×Γ . Boolean properties are a
special case, which include safety properties, e.g., “an emergency vehicle should always
get a green light”, and liveness, e.g., “a car waiting in a queue eventually gets the green
light”. An example of a quantitative score is the long-run average of the waiting times
of the vehicles in the city. A second score measures the interference of a shield with
a controller. It is given by a weighted automaton over the alphabet Γ × Γ . A simple
example of an interference score charges the shield 1 for every change of action and
charges 0 when no change is made. Then, the score of an infinite trace can be phrased as
the ratio of the time that the shield interferes. Using weighted automata we can specify
more involved scores such as different charges for different types of alterations or even
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charges that depend on the past, e.g., altering the controller’s command twice in a row
is not allowed.

Given a probabilistic plant model and a formal specification of behavioral and inter-
ference scores, the problem of synthesizing an optimal shield is well-defined and can be
solved by game theory. While the game-based techniques we use are those of discrete-
event controller synthesis [3] in a stochastic setting with quantitative objectives, our
set-up is quite different. In traditional controller synthesis, there are two entities; the
controller and the adversarial plant. The goal is to synthesize a controller offline. In
our setting, there are three entities: the plant, whose behavior we model probabilisti-
cally, the controller, which we treat as a black-box and model as an adversary, and the
shield, which we synthesize. Note that the shield’s synthesis procedure is done offline
but it makes online decisions when it operates together with the controller and plant.
Our plant model is formally given by a Markov decision process which is a standard
model with which one models lack of knowledge about the plant using probability (see
Fig. 1 and details in Example 1). The game is played on the MDP by two players; a
shield and a controller, where the quantitative objective is given by the two scores. An
optimal shield is then extracted from an optimal strategy for the shield player. The game
we construct admits memoryless optimal strategies, thus the size of the shield is pro-
portional to the size of the abstraction of the plant. In addition, it is implemented as a
look-up table for actions in every state. Thus, the runtime overhead is a table look-up
and hence negligible.

We experiment with our framework by constructing shields for traffic lights in a
network of roads. Our experimental results illustrate the usefulness of the framework.
We construct shields that consistently improve the performance of controllers, espe-
cially when exhibiting behavior that they are not trained on, but, more surprising, also
while exhibiting trained behavior. We show that the use of a shield reduces variability
in performance among various controllers, thus when using a shield, the choice of the
parameters used in the training phase becomes less acute. We show how a shield can be
used to add the functionality of prioritizing public transport as well as local fairness to a
controller, both without re-training the controller. In addition, we illustrate how shields
can add worst-case guarantees on liveness without a costly verification of the controller.

1.1 Related Work

A shield-like approach to adding safety to systems is called runtime assurance [47], and
has applications, for example, in control of robotics [41] and drones [12]. In this frame-
work, a switching mechanism alternates between running a high-performance system
and a provably safe one. These works differ from ours since they consider safety specifi-
cations. As mentioned earlier, a challenge with quantitative specifications is that, unlike
safety specifications, a non-interference typically does not have a devastating effect,
thus it is not trivial to decide when and to what extent to interfere.

Another line of work is runtime enforcement, where an enforcer monitors a program
that outputs events and can either terminate the program once it detects an error [45], or
alter the event in order to guarantee, for example, safety [21], richer qualitative objec-
tives [16], or privacy [26,49]. The similarities between an enforcer and a shield is in



634 G. Avni et al.

their ability to alter events. The settings are quite different, however, since the enforced
program is not reactive whereas we consider a plant that receives commands.

Recently, formal approaches were proposed in order to restrict the exploration of the
learning agent such that a set of logically constraints are always satisfied. This method
can support other properties beyond safety, e.g., probabilistic computation tree logic
(PCTL) [25,36], linear temporal logic (LTL) [1], or differential dynamic logic [17].
To the best of our knowledge, quantitative specifications have not yet been considered.
Unlike these approaches, we consider the learned controller as a black box, thus our
approach is particularly suitable for machine learning non-experts.

While MDPs and partially-observable MDPs have been widely studied in the liter-
ature w.r.t. to quantitative objectives [27,43], our framework requires the interaction of
two players (the shield and the black-box controller) and we use game-theoretic frame-
work with quantitative objectives for our solution.

2 Definitions and Problem Statement

2.1 Plants, Controllers, and Shields

The interaction with a plant over a concrete set of states C is carried out
using two functionalities: PLANT.GETSTATE returns the plant’s current state and
PLANT.ISSUECOMMAND issues an action from a set Γ . Once an action is issued, the
plant updates its state according to some unknown transition function. At each point
in time, the controller reads the state of the plant and issues a command. Thus, it is a
function from a history in (C × Γ )∗ · C to Γ .

Informally, a shield serves as a proxy between the controller and the plant. In each
time point, it reads the controller’s issued action and can choose an alternative action to
issue to the plant. We are interested in light-weight shields that add little or no overhead
to the controller, thus the shield must be defined w.r.t. an abstraction of the plant, which
we define formally below.

Abstraction. An abstraction is a Markov decision process (MDP, for short) is A =
〈Γ,A, a0, δ〉, where Γ is a set of actions, A is a set of abstract plant states, a0 ∈ A is an
initial state, and δ : A×Γ → [0, 1]A is a probabilistic transition function, i.e., for every
a ∈ A and γ ∈ Γ , we have

∑
a′∈A δ(a, γ)(a′) = 1. The probabilities in the abstraction

model our lack of knowledge of the plant, and we assume that they reflect the behavior
exhibited by the plant. A policy f is a function from a finite history of states in A∗ to
the next action in Γ , thus it gives rise to a probabilistic distribution D(f) over infinite
sequences over A.

Example 1. Consider a plant that represents a junction with four incoming directions
(see Fig. 1). We describe an abstraction A for the junction that specifies how many cars
are waiting in each queue, where we cut off the count at a parameter k ∈ N. Formally,
an abstract state is a vector in {0, . . . , k}4, where the indices respectively represent the
North, East, South, and West queues. The larger k is, the closer the abstraction is to
the concrete plant. The set of possible actions represent the possible light directions
in the junction {NS, EW}. The abstract transitions estimate the plant behavior, and
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we describe them in two steps. Consider an abstract state a = (a1, a2, a3, a4) and
suppose the issued action is NS, where the case of EW is similar. We allow a car to cross
the junction from each of the North and South queues and decrease the two queues.
Let a′ = (max{0, a1 − 1}, a2,max{0, a3 − 1}, a4). Next, we probabilistically model
incoming cars to the queues as follows. Consider a vector 〈i1, i2, i3, i4〉 ∈ {0, 1}4 that
represents incoming cars to the queues. Let a′′ be such that, for 1 ≤ j ≤ 4, we add ij to
the j-th queue and trim at k, thus a′′

j = min{a′
j + ij , k}. Then, in A, when performing

action NS in a, we move to a′′ with the uniform probability 1/16. ��
We define shields formally. Let Γ be a set of commands, M a set of memory states,

C and A be a set of concrete and abstract states, respectively, and let α : C → A be
a mapping between the two. A shield is a function SHIELD : A × M × Γ → Γ × M
together with an initial memory state m0 ∈ M . We use PLANT to refer to the plant,
which, recall, has two functionalities: reading the current state and issuing a command
from Γ . Let CONT be a controller, which has a single functionality: given a history of
plant states, the controller issues the command to issue to the plant. The interaction of
the components is captured in the following pseudo code:

m ← m0 ∈ M and π ← empty sequence.
while true do

c ← PLANT.GETSTATE() ∈ C
γ ← CONT.GETCOMMAND(π · c)
a = α(c) ∈ A // generate abstract state for shield
γ′,m′ ← SHIELD(a, γ,m)
PLANT.ISSUECOMMAND(γ′)
m ← m′ // update shield memory state
π ← π · 〈c, γ′〉 // update plant history

end while

2.2 Quantitative Objectives for Shields

We are interested in two types of performance measures for shields. The behavioral
measure quantifies the quality of the plant’s behavior when operated with a controller
and shield. The interference measure quantifies the degree to which a shield interferes
with the controller. Formally, we need to specify values for infinite sequences, and we
use weighted automata, which are a convenient model to express such values.

Weighted Automata. A weighted automaton is a function from infinite strings to val-
ues. Technically, a weighted automaton is similar to a standard automaton only that the
transitions are labeled, in addition to letters, with numbers (weights). Unlike standard
automata in which a run is either accepting or rejecting, a run in a weighted automaton
has a value. We focus on limit-average automata in which the value is the limit aver-
age of the running sum of weights that it traverses. Formally, a weighted automaton
is W = 〈Σ,Q, q0,Δ, cost〉, where Σ is a finite alphabet, Q is a finite set of states,
Δ ⊆ (Q × Σ × Q) is a deterministic transition relation, i.e., for every q ∈ Q and
σ ∈ Σ, there is at most one q′ ∈ Q with Δ(q, σ, q′), and cost : Δ → Q specifies costs
for transitions. A run of W on an infinite word σ = σ1, σ2, . . . is r = r0, r1, . . . ∈ Qω
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such that r0 = q0 and, for i ≥ 1, we have Δ(ri−1, σi, ri). Note that W is deter-
ministic so there is at most one run on every word. The value that W assigns to σ is
lim infn→∞ 1

n

∑n
i=1 cost(ri−1, σi, ri).

Behavioral Score. A behavioral score measures the quality of the behavior that the
plant exhibits. It is given by a weighed automaton over the alphabet A × Γ , thus it
assigns real values to infinite sequences over A × Γ . In our experiments, we use a
concrete behavioral score, which assigns values to infinite sequences over C × Γ . We
compare the performance of the plant with various controllers and shields w.r.t. the
concrete score rather than the abstract score. With a weighted automaton we can express
costs that change over time: for example, we can penalize traffic lights that change
frequently.

Interference Score. The second score we consider measures the interference of the
shield with the controller. An interference score is given by a weighted automaton over
the alphabet Γ × Γ . With a weighted automaton we can express costs that change over
time: for example, interfering once costs 1 and any successive interference costs 2, thus
we reward the shield for short interferences.

From Shields and Controllers to Policies. Consider an abstraction MDP A. To ensure
worst-case guarantees, we treat the controller as an adversary for the shield. Let SHIELD

be a shield with memory set M and initial memory state m0. Intuitively, we find a policy
in A that represents the interaction of SHIELD with a controller that maximizes the cost
incurred. Formally, an abstract controller is a function χ : A∗ → Γ . The interaction
between SHIELD and χ gives rise to a policy pol(SHIELD, χ) in A, which, recall, is a
function from A∗ to Γ . We define pol(SHIELD, χ) inductively as follows. Consider a
history π ∈ A∗ that ends in a ∈ A, and suppose the current memory state of SHIELD is
m ∈ M . Let γ = χ(π) and let 〈γ′,m′〉 = SHIELD(γ, a,m). Then, the action that the
policy pol(SHIELD, χ) assigns is γ′, and we update the memory state to be m′.

Problem Definition; Quantitative Shield Synthesis Consider an abstraction MDP A,
a behavioral score BEH, an interference score INT, both given as weighted automata,
and a factor λ ∈ [0, 1] with which we weigh the two scores. Our goal is to find
an optimal shield w.r.t. these inputs as we define below. Consider a shield SHIELD

with memory set M . Let X be the set of abstract controllers. For SHIELD and
χ ∈ X , let D(SHIELD, χ) be the probability distribution over A × Γ × Γ that the
policy pol(SHIELD, χ) gives rise to. The value of SHIELD, denoted val(SHIELD), is
supχ∈X Er∼D(SHIELD,χ)[λ · INT(r) + (1 − λ) · BEH(r)]. An optimal shield is a shield
whose value is infSHIELD val(SHIELD).

Remark 1 (Robustness and flexibility). The problem definition we consider allows
quantitative optimization of shields w.r.t. two dimensions of quantitative measures. Ear-
lier works have considered shields but mainly with respect to Boolean measures in both
dimensions. For example, in [30], shields for safety behavioral measures were con-
structed with a Boolean notion of interference, as well as a Boolean notion of shield cor-
rectness. In contrast we allow quantitative objectives in both dimensions which presents
a much more general and robust framework. For example, the first measure of correct-
ness can be quantitative and minimize the error rate, and the second measure can allow
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shields to correct but minimize the long-run average interference. Both of the above
allows the shield to be flexible. Moreover, tuning the parameter λ allows flexible trade-
off between the two.

We allow a robust class of quantitative specifications using weighted automata,
which have been already established as a robust specification framework. Any automata
model can be used in the framework, not necessarily the ones we use here. For example,
weighted automata that discount the future or process only finite-words are suitable for
planning purposes [32]. Thus our framework is a very robust and flexible framework
for quantitative shield synthesis. ��

2.3 Examples

In Remark 1 we already discussed the flexibility of the framework. We now present
concrete examples of instantiations of the optimization problem above on our running
example, which illustrate how quantitative shields can be used to cope with limitations
of learned controllers.

Dealing with Unexpected Plant Behavior; Rush-Hour Traffic. Consider the abstrac-
tion described in Example 1, where each abstract state is a 4-dimensional vector that
represents the number of waiting cars in each direction. The behavioral score we
use is called the max queue. It charges an abstract state a ∈ {0, . . . , k}4 with the
size of the maximal queue, no matter what the issued action is, thus costBEH(a) =
maxi∈{1,2,3,4} ai. A shield that minimizes the max-queue cost will prioritize the direc-
tion with the largest queue. For the interference score, we use a score that we call the
basic interference score; we charge the shield 1 whenever it changes the controller’s
action and otherwise we charge it 0, and take the long-run average of the costs. Recall
that in the construction in Example 1, we chose uniformly at random the vector of
incoming cars. Here, in order to model rush-hour traffic, we use a different distribution,
where we let pj be the probability that a car enters the j-th queue. Then, the probability
of a vector 〈i1, i2, i3, i4〉 ∈ {0, 1}4 is

∏
1≤j≤4(pj · ij + (1 − pj) · (1 − ij)). To model

a higher load traveling on the North-South route, we increase p1 and p3 beyond 0.5.

Weighing Different Goals; Local Fairness. Suppose the controller is trained to max-
imize the number of cars passing a city. Thus, it aims to maximize the speed of the
cars in the city and prioritizes highways over farm roads. A secondary objective for a
controller is to minimize local queues. Rather than adding this objective in the training
phase, which can have an un-expected outcome, we can add a local shield for each junc-
tion. To synthesize the shield, we use the same abstraction and basic interference score
as in the above. The behavioral score we use charges an abstract state a ∈ {0, . . . , k}4
with difference |(a1 + a3)− (a2 + a4)|, thus the greater the inequality between the two
waiting directions, the higher the cost.

Adding Features to the Controller; Prioritizing Public Transport. Suppose a con-
troller is trained to increase throughput in a junction. After the controller is trained, a
designer wants to add a functionality to the controller that prioritizes buses over per-
sonal vehicles. That is, if a bus is waiting in the North direction, and no bus is waiting
in either the East or West directions, then the light should be North-South, and the other
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cases are similar. The abstraction we use is simpler than the ones above since we only
differentiate between a case in which a bus is present or not, thus the abstract states are
{0, 1}4, where the indices represent the directions clockwise starting from North. Let
γ = NS. The behavioral cost of a state a is 1 when a2 = a4 = 0 and a1 = 1 or a3 = 1.
The interference score we use is the basic one. A shield guarantees that in the long run,
the specification is essentially never violated.

3 A Game-Theoretic Approach to Quantitative Shield Synthesis

In order to synthesize optimal shields we construct a two-player stochastic game [10],
where we associate Player 2 with the shield and Player 1 with the controller. The game
is defined on top of an abstraction and the players’ objectives are given by the two
performance measures. We first formally define stochastic games, then we construct
the shield synthesis game, and finally show how to extract a shield from a strategy for
Player 2.

Stochastic Graph Games. The game is played on a graph by placing a token on a
vertex and letting the players move it throughout the graph. For ease of presentation,
we fix the order in which the players move: first, Player 1, then Player 2, and then
“Nature”, i.e., the next vertex is chosen randomly. Edges have costs, which, again for
convenience, appear only on edges following Player 2 moves. Formally, a two-player
stochastic graph-game is 〈V1, V2, VN , E,Pr, cost〉, where V = V1 ∪ V2 ∪ VN is a finite
set of vertices that is partitioned into three sets, for i ∈ {1, 2}, Player i controls the
vertices in Vi and “Nature” controls the vertices in VN , E ⊆ (V1 × V2) ∪ (V2 × VN )
is a set of deterministic edges, Pr : VN × V1 → [0, 1] is a probabilistic transition
function, and cost : (V2 × VN ) → Q. Suppose the token reaches v ∈ V . If v ∈ Vi,
for i ∈ {1, 2}, then Player i chooses the next position of the token u ∈ V , such that
E(v, u). If v ∈ VN , then the next position is chosen randomly; namely, the token moves
to u ∈ V with probability Pr[v, u].

The game is a zero-sum game; Player 1 tries to maximize the expected long-run
average of the accumulated costs, and Player 2 tries to minimize it. A strategy for
Player i, for i ∈ {1, 2}, is a function that takes a history in V ∗ · Vi and returns the
next vertex to move the token to. The games we consider admit memoryless optimal
strategies, thus it suffices to define a Player i strategy as a function from Vi to V .
We associate a payoff with two strategies f1 and f2, which we define next. Given
f1 and f2, it is not hard to construct a Markov chain M with states VN and with
weights on the edges: for v, u ∈ VN , the probability of moving from v to u in M
is PrM[v, u] =

∑
w∈V1:f2(f1(w))=u Pr[v, w] and the cost of the edge is costM(v, u) =

∑
w∈V1:f2(f1(w))=u Pr[v, w] · cost(f1(w), u). The stationary distribution sv of a vertex

v ∈ VN in M is a well known concept [43] and it intuitively measures the long-run
average time that is spend in v. The payoff w.r.t. f1 and f2, denoted payoff(f1, f2) is∑

v,u∈VN
sv · PrM[v, u] · costM(v, u). The payoff of a strategy is the payoff it guar-

antees against any strategy of the other player, thus payoff(f1) = inff2 payoff(f1, f2).
A strategy is optimal for Player 1 if it achieves the optimal payoff, thus f is optimal if
payoff(f) = supf1

payoff(f1). The definitions for Player 2 are dual.
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Constructing the Synthesis Game. Consider an abstraction MDP A = 〈Γ,A, a0, δ〉,
weighted automata for the behavioral score BEH = 〈A×Γ,QBEH, qBEH

0 ,ΔBEH, costBEH〉
and interference score INT = 〈Γ ×Γ,QINT, q

INT
0 ,ΔINT, costINT〉, and a factor λ ∈ [0, 1].

We associate Player 1 with the controller and Player 2 with the shield. In each step, the
controller first chooses an action, then the shield chooses whether to alter it, and the
next state is selected at random. Let S = A × QINT × QBEH. We define GA,BEH,INT,λ =
〈V1, V2, VN , E,Pr, cost〉, where

– V1 = S,
– V2 = S × Γ ,
– VN = S×Γ ×{N}, where the purpose of N is to differentiate between the vertices,
– E(s, 〈s, γ〉)

for s ∈ S and γ ∈ Γ , and E(〈s, γ〉, 〈s′, γ′, N〉) for s = 〈a, q1, q2〉 ∈ S, γ, γ′ ∈
Γ, and s′ = 〈a, q′

1, q
′
2〉 ∈ S s.t. ΔINT(q1, 〈γ, γ′〉, q′

1) and ΔBEH(q2, 〈a, γ′〉, q′
2),

– Pr[〈〈a, q1, q2〉, γ,N〉, 〈a′, q1, q2〉] = δ(a, γ)(a′), and
– for s = 〈a, q1, q2〉 and s′ = 〈a, q′

1, q
′
2〉 as in the above, we have cost(〈s, γ〉,

〈s′, γ′, N〉) = λ · costINT(q1, 〈γ, γ′〉, q′
1) + (1 − λ) · costBEH(q2, 〈γ′, a〉, q′

2).

From Strategies to Shields. Recall that the game GA,BEH,INT,λ admits memoryless
optimal strategies. Consider an optimal memoryless strategy f for Player 2. Thus,
given a Player 2 vertex in V2, the function f returns a vertex in VN to move to. The
shield SHIELDf that is associated with f has the memory set M = QINT × QBEH

and the initial memory state is 〈qINT
0 , qBEH

0 〉. Given an abstract state a ∈ A, a mem-
ory state 〈qINT, qBEH〉 ∈ M , and a controller action γ ∈ Γ , let 〈a, q′

INT, q
′
BEH, γ′〉 =

f(a, qINT, qBEH, γ). The shield SHIELDf returns the action γ′ and the updated memory
state 〈q′

INT, q
′
BEH〉.

Theorem 1. Given an abstraction A, weighted automata BEH and INT, and a factor
λ, the game GA,BEH,INT,λ admits optimal memoryless strategies. Let f be an optimal
memoryless strategy for Player 2. The shield SHIELDf is an optimal shield w.r.t. A,
BEH, INT, and λ.

Remark 2 (Shield size). Recall that a shield is a function SHIELD : A × Γ × M →
Γ × M , which we store as a table. The size of the shield is the size of the domain,
namely the number of entries in the table. Given an abstraction with n1 states, a set of
possible commands Γ , and weighted automata with n2 and n3 states, the size of the
shield we construct is n1 · n2 · n3 · |Γ |. ��
Remark 3. Our construction of the game can be seen as a two-step procedure: we con-
struct a stochastic game with two mean-payoff objectives, a.k.a. a two-dimensional
game, where the shield player’s goal is to minimize both the behavioral and inter-
ference scores separately. We then reduce the game to a “one-dimension” game by
weighing the scores with the parameter λ. We perform this reduction for several rea-
sons. First, while multi-dimensional quantitative objectives have been studied in several
cases, such as MDPs [4,6,7] and special problems of stochastic games (e.g., almost-
sure winning) [2,5,8], there is no general algorithmic solution known for stochastic
games with two-dimensional objectives. Second, even for non-stochastic games with
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two-dimensional quantitative objectives, infinite-memory is required in general [48].
Finally, in our setting, the parameter λ provides a meaningful tradeoff: it can be asso-
ciated with how well we value the quality of the controller. If the controller is of poor
quality, then we charge the shield less for interference and set λ to be low. On the other
hand, for a high-quality controller, we charge the shield more for interferences and set
a high value for λ. ��

4 Case Study

We experiment with our framework in designing quantitative shields for traffic-light
controllers that are trained using reinforcement-learning (RL). We illustrate the use-
fulness of shields in dealing with limitations of RL as well as providing an intuitive
framework to complement RL techniques.

Traffic Simulation. All experiments were conducted using traffic simulator “Simula-
tion of Urban MObility” (SUMO, for short) [31] v0.22 using the SUMO Python API.
Incoming traffic in the cities is chosen randomly. The simulations were executed on a
desktop computer with a 4 x 2.70 GHz Intel Core i7-7500U CPU, 7.7 GB of RAM
running Ubuntu 16.04.

The Traffic Light Controller. We use RL to train a city-wide traffic-signal controller.
Intuitively, the controller is aware of the waiting cars in each junction and its actions
constitute a light assignment to all the junctions. We train a controller using a deep
convolutional Q-network [37]. In most of the networks we test with, there are two
controlled junctions. The input vector to the neural network is a 16-dimensional vec-
tor, where 8 dimensions represent a junction. For each junction, the first four compo-
nents state the number of cars approaching the junction and the last four components
state the accumulated waiting time of the cars in each one of the lanes. For exam-
ple, in Fig. 1, the first four components are (3, 6, 3, 1), thus the controller’s state is
not trimmed at 5. The controller is trained to minimize both the number of cars wait-
ing in the queues and the total waiting time. For each junction i, the controller can
choose to set the light to be either NSi or EWi, thus the set of possible actions is
Γ = {NS1NS2, EW1NS2, NS1EW2, EW1EW2}.

We use a network consisting of 4 layers: The input layer is a convolutional layer
with 16 nodes, the first hidden and the second hidden layers consisting out of 604 nodes
and 1166 nodes, respectively. The output layer consists of 4 neurons with linear activa-
tion functions, each representing one of the above mentioned actions listed in Γ . The
Q-learning uses the learning rate α = 0.001 and the discount factor 0.95 for the Q-
update and an ε-greedy exploration policy. The artificial neural network is built on an
open source implementation1 using Keras [9] and additional optimized functionality
was provided by the NumPy [40] library. We train for 100 training epochs, where each
epoch is 1500 seconds of simulated traffic, plus 2000 additional seconds in which no
new cars are introduced. The total training time of the agent is roughly 1.5 hours. While
the RL procedure that we use is simple procedure, it is inspired by standard approaches

1 https://github.com/Wert1996/Traffic-Optimisation.

https://github.com/Wert1996/Traffic-Optimisation
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to learning traffic controllers and produces controllers that perform relatively well also
with no shield.

The Shield. We synthesize a “local” shield for a junction and copy the shield for each
junction in the city. Recall that the first step in constructing the synthesis game is to con-
struct an abstraction of the plant, which intuitively represents the information according
to which the shield makes its decisions. The abstraction we use is described in Exam-
ple 1; each state is a 4-dimensional integer in {0, . . . , k}, which represents an abstrac-
tion of the number of waiting cars in each direction, cut-off by k ∈ N. As elaborated in
the example, when a shield assigns a green light to a direction, we evict a car from the
two respectable queues, and select the incoming cars uniformly at random. Regarding
objectives, in most of our experiments, the behavioral score we use charges an abstract
state a ∈ {0, . . . , k}4 with |(a1 + a3) − (a2 + a4)|, thus the shield aims to balance the
total number of waiting cars per direction. The interference score we use charges the
shield 1 for altering the controller’s action.

Since we use simple automata for objectives, the size of the shields we use is |A×Γ |,
where |Γ | = 2. In our experiments, we cut-off the queues at k = 6, which results in a
shield of size 2592. The synthesis procedure’s running time is in the order of minutes.
We have already pointed out that we are interested in small light-weight shields, and
this is indeed what we construct. In terms of absolute size, the shield takes ∼60KB
versus the controller who takes ∼3MB; a difference of 2 orders of magnitude.

Our synthesis procedure includes a solution to a stochastic mean-payoff game.
The complexity of solving such games is an interesting combinatorial problem in NP
and coNP (thus unlikely to be NP-hard) for which the existence of a polynomial-time
algorithm is major long-standing open problem. The current best-known algorithms
are exponential, and even for special cases like turn-based deterministic mean-payoff
games or turn-based stochastic games with reachability objectives, no polynomial-time
algorithms are known. The algorithm we implemented is called the strategy iteration
algorithm [22,23] in which one starts with a strategy and iteratively improves it, where
each iteration requires polynomial time. While the algorithm’s worst-case complexity
is exponential, in practice, the algorithm has been widely observed to terminate in a few
number of iterations.

Evaluating Performance. Throughout all our experiments, we use a unified and con-
crete measure of performance: the total waiting time of the cars in the city. Our assump-
tion is that minimizing this measure is the main objective of the designer of the traffic
light system for the city. While performance is part of the objective function when train-
ing the controller, the other components of the objective are used in order to improve
training. Similarly, the behavioral measure we use when synthesizing shields is chosen
heuristically in order to construct shields that improve concrete performance.

The Effect of Changing λ. Recall that we use λ ∈ [0, 1] in order to weigh between
the behavioral and interference measures of a shield, where the larger λ is, the more the
shield is charged for interference. In our first set of experiments, we fix all parameters
apart from λ and synthesize shields for a city that has two controllable junctions. In the
first experiment, we use a random traffic flow that is similar to the one used in training.
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Fig. 2. Results for shields constructed with various λ values, together with a fixed plant and
controller, where the simulation traffic distribution matches the one the controller is trained for.

We depict the results of the simulation in Fig. 2. We make several observations on the
results below.
Interference. We observe that the ratio of the time that the shield intervenes is low: for
most values of λ the ratio is well below 10%. For large values of λ, interference is too
costly, and the shields become trivial, namely it never alters the actions of the controller.
The performance we observe is thus the performance of the controller with no shield. In
this set of experiments, we observe that the threshold after which shields become trivial
is λ = 0.5, and for different setups, the threshold changes.

Performance. We observe that performance as function of λ, is a curve-like function.
When λ is small, altering commands is cheap, the shield intervenes more frequently,
and performance drops. This performance drop is expected: the shield is a simple device
and the quality of its routing decisions cannot compete with the trained controller. This
drop is also encouraging since it illustrates that our experimental setting is interesting.
Surprisingly, we observe that the curve is in fact a paraboloid: for some values, e.g.,
λ = 0.4, the shield improves the performance of the controller. We find it unexpected
that the shield improves performance even when observing trained behavior, and this
performance increase is observed more significantly in the next experiments.

Rush-Hour Traffic. In Fig. 3, we use a shield to add robustness to a controller for
behavior it was not trained for. We see a more significant performance gain in this exper-

Fig. 3. Similar to Fig. 2 only that the sim-
ulation traffic distribution models rush-hour
traffic.

Fig. 4. Comparing the variability in performance
of the different controllers, with shield (blue) and
without a shield (red). (Color figure online)
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iment. We use the controller from the previous experiment, which is trained for uniform
car arrival. We simulate it in a network with “rush-hour” traffic, which we model by sig-
nificantly increasing the traffic load in the North-South direction. We synthesize shields
that prefer to evict traffic from the North-South queue over the East-West queue. We
achieve this by altering the objective in the stochastic game; we charge the shield a
greater penalty for cars waiting in these queues over the other queues. For most values
of λ below 0.7, we see a performance gain. Note that the performance of the controller
with no shield is depicted on the far right, where the shield is trivial. An alternative
approach to synthesize a shield would be to alter the probabilities in the abstraction, but
we found that altering the weights results in a better performance gain.

Reducing Variability. Machine learning techniques are intricate, require expertise, and
a fine tuning of parameters. This set of experiments show how the use of shields reduces
variability of the controllers, and as a result, it reduces the importance of choosing
the optimal parameters in the training phase. We fix one of the shields from the first
experiment with λ = 0.4. We observe performance in a city with various controllers,
which are trained with varying training parameters, when the controllers are run with
and without the shield and on various traffic conditions that sometimes differ from the
ones they are trained on.

The city we experiment with consists of a main two-lane road that crosses the city
from East to West. The main road has two junctions in which smaller “farm roads”
meet the main road. We refer to the bulk traffic as the traffic that only “crosses the
city”; namely, it flows only on the main road either from East to West or in the opposite
direction. For r ∈ [0, 1], Controller-r is trained where the ratio of the bulk traffic out of
the total traffic is r. That is, the higher r is, the less traffic travels on the farm roads. We
run simulations in which Controller-r observes bulk traffic k ∈ [0, 1], which it was not
necessarily trained for.

Fig. 5. Results for Controllers-0.65 and 0.9 exhibiting traffic that they are not trained for, with
and without a shield. Performance is the total waiting time of the cars in the city.

In Fig. 5, we depict the performance of two controllers for various traffic settings.
We observe, in these two controllers as well as the others, that operating with a shield
consistently improves performance. The plots illustrate the unexpected behavior of
machine-learning techniques: e.g., when run without a shield, Controller-0.9 outper-
forms Controller-0.65 in all settings, even in the setting 0.65 on which Controller-0.65
was trained on. Thus, a designer who expects a traffic flow of 0.65, would be better
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off training with a traffic of 0.9. A shield improves performance and thus reduces the
importance of which training data to use.

Measuring Variability. In Fig. 4, we depict the variability in performance between
the controllers. The higher the variability is, the more significant it is to
choose the right parameters when training the controller. Formally, let R =
{0.65, 0.7, 0.75, 0.8, 0.85, 0.9}. For r, k ∈ R, we let Perf(r, k) denote the performance
(total waiting times) when Controller-r observes bulk traffic k. For each k ∈ R, we
depict maxr∈R Perf(r, k) − minr′∈R Perf(r′, k), when operating with and without a
shield.

Clearly, the variability with a shield is significantly lower than without one. This
data shows that when operating with a shield, it does not make much difference if a
designer trains a controller with setting r or r′. When operating without a shield, the
difference is significant.

Overcoming Liveness Bugs. Finding bugs in learned controllers is a challenging task.
Shields bypass the need to find bugs since they treat the controller as a black-box and
correct its behavior. We illustrate their usefulness in dealing with liveness bugs. In the
same network as in the previous setting, we experiment with a controller whose train-
ing process lacked variability. In Fig. 6, we depict the light configuration throughout
the experiment on the main road; the horizontal axis represents time, red means a red
light for the main road and dually green. Initially, the controller performs well, but
roughly half-way through the simulation it hits a bad state after which the light stays
red. The shield, with only a few interferences, which are represented with dots, manages
to recover the controller from its stuck state. In Fig. 7, we depict the number of waiting
cars in the city, which clearly skyrockets once the controller gets stuck. It is evident that
initially, the controller performs well. This point highlights that it is difficult to recog-

Fig. 6. The light in the East-West direction (the main road) of a junction. On bottom, with no
shield the controller is stuck. On top, the shield’s interferences are marked with dots.

Fig. 7. The total number of waiting cars (log-scale) with and without a shield. Initially, the con-
troller performs well on its own, until it gets stuck and traffic in the city freezes.



Run-Time Optimization for Learned Controllers Through Quantitative Games 645

nize when a controller has a bug – in order to catch such a bug, a designer would need
to find the right simulation and run it half way through before the bug appears.

One way to regain liveness would be to synthesize a shield for the qualitative prop-
erty “each direction eventually gets a green light”. Instead, we use a shield that is syn-
thesized for the quantitative specification as in the previous experiment. The shield,
with a total of only 20 alterations is able to recover the controller from the bad state it
is stuck in, and traffic flows correctly.

Adding Functionality; Prioritizing Public Transport. Learned controllers are mono-
lithic. Adding functionality to a controller requires a complete re-training, which is
time consuming, computationally costly, and requires care; changes in the objective
can cause unexpected side effects to the performance. We illustrate how, using a shield,
we can add to an existing controller, the functionality of prioritizing public transport.

The abstraction over which the shield is constructed slightly differs from the one
used in the other experiments. The abstract state space is the same, namely four-
dimensional vectors, though we interpret the entries as the positions of a bus in the
respective queue. For example, the state (0, 3, 0, 1) represents no bus in the North queue
and a bus which is waiting, third in line, in the East queue. Outgoing edges from an
abstract state also differ as they take into account, using probability, that vehicles might
enter the queues between buses. For the behavioral score, we charge an abstract state
with the sum of its entries, thus the shield is charged whenever buses are waiting and it
aims to evict them from the queues as soon as possible.

In Fig. 8, we depict the performance of all vehicles and only buses as a function of
the weighing factor λ. The result of this experiment is positive; the predicted behavior
is observed. Indeed, when λ is small, interferences are cheap, which increase bus per-
formance at the expense of the general performance. The experiment illustrates that the
parameter λ is a convenient method to control the degree of prioritization of buses.

Local Fairness. In this experiment, we add local fairness to a controller that was trained
for a global objective. We experiment with a network with four junctions and a city-wide
controller, which aims to minimize total waiting times. Figure 9 shows that when the
controller is deployed on its own, queues form in the city whereas a shield, which was
synthesized as in the first experiments, prevents such local queues from forming.

Fig. 8. The waiting time of buses/all vehicles
with shields parameterized by λ.

Fig. 9. Comparing the amount of waiting
cars with and without a shield.
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5 Discussion and Future Work

We suggest a framework for automatically synthesizing quantitative runtime shields
to cope with limitations of machine-learning techniques. We show how shields can
increase robustness to untrained behavior, deal with liveness bugs without verification,
add features without retraining, and decrease variability of performance due to changes
in the training parameters, which is especially helpful for machine learning non-experts.
We use weighted automata to evaluate controller and shield behavior and construct a
game whose solution is an optimal shield w.r.t. a weighted specification and a plant
abstraction. The framework is robust and can be applied in any setting where learned or
other black-box controllers are used.

We list several directions for further research. In this work, we make no assump-
tions on the controller and treat it adversarially. Since the controller might have bugs,
modelling it as adversarial is reasonable. Though, it is also a crude abstraction since typ-
ically, the objectives of the controller and shield are similar. For future work, we plan
to study ways to model the spectrum between cooperative and adversarial controllers
together with solution concepts for the games that they give rise to.

In this work we make no assumptions on the relationship between the plant and the
abstraction. While the constructed shields are optimal w.r.t. the given abstraction, the
scores they guarantee w.r.t. the abstraction do not imply performance guarantees on the
plant. To be able to produce performance guarantees on the concrete plant, we need
guarantees on the relationship between the plant its abstraction. For future work, we
plan to study the addition of such guarantees and how they affect the quality measures.
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The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
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from the copyright holder.
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