1,556 research outputs found

    Screening attenuation of coaxial cables determined in GTEM-cells

    Get PDF
    This paper describes the determination of the screening attenuation with a GTEM cell. An analytical part gives the link between the voltage at the cell port and the total radiated power. The next section investigates the optimal cable setup in the cell. With a measurement of the common mode current on the cable and a simulation of the radiation resistance the loop antenna characteristic of the cable setup could be verified. It is shown that the use of ferrit cores decrease the difference between the maximum and the minimum screening attenuation. The determination of great screening attenuation could be improved with the use of N-type measurement cables. A comparison between this GTEM cell method and the standard methods shows a good agreement

    Arc Magmas from Slab to Eruption: The Case of Kliuchevskoy Volcano

    Get PDF
    Arc magmas are generated by a number of mantle and crustal processes. Our multidisciplinary, long-term research is aimed at deciphering these processes for a single arc volcano, Kliuchevskoy volcano in Kamchatka. Some key results of the study follow: 1) Modeling of trace element and H2O contents in melt inclusions suggests that the primary magmas originate via hydrous flux-melting of the mantle wedge at temperatures close to the dry peridotite solidus. The role of decompression melting is minor or absent at Kliuchevskoy and other arc volcanoes built on relatively thick crust. 2) Geochemistry of high-Mg olivine suggests that primary Kliuchevskoy magmas have substantial contribution from olivine-free pyroxenite (up to 30 %), which could be formed by reaction of slab melts (or supercritical fluids) with mantle wedge peridotite. 3) Parental Kliuchevskoy melts start to crystallize as deep as the Moho boundary, and the erupted magmas reflect multistage and complex processes of crystallization, magma mixing and crustal assimilation. None of the Kliuchevskoy rocks analyzed thus far represent true primary melt compositions. 4) The Kliuchevskoy Holocene eruptive history is not steady-state in terms of eruption rate and geochemistry. There are two millenial cycles with major and trace element and OSr- Nd-Pb and U-series isotope compositions of the magmas changing gradually from more to less affected by crustal (?) assimilation. The onset of the cycles correlates with periods of enhanced volcanic activity in Kamchatka, suggesting that the extent of magma-crust interaction is inversely related to magma production rate and thus magma flux from the mantle

    Critical Quantum Metrology with a Finite-Component Quantum Phase Transition

    Get PDF
    Physical systems close to a quantum phase transition exhibit a divergent susceptibility, suggesting that an arbitrarily high precision may be achieved by exploiting quantum critical systems as probes to estimate a physical parameter. However, such an improvement in sensitivity is counterbalanced by the closing of the energy gap, which implies a critical slowing down and an inevitable growth of the protocol duration. Here, we design different metrological protocols that exploit the superradiant phase transition of the quantum Rabi model, a finite-component system composed of a single two-level atom interacting with a single bosonic mode. We show that, in spite of the critical slowing down, critical quantum optical probes can achieve a quantum-enhanced time scaling of the sensitivity in frequency-estimation protocols

    A Unified Interface Model for Dissipative Transport of Bosons and Fermions

    Full text link
    We study the directed transport of bosons along a one dimensional lattice in a dissipative setting, where the hopping is only facilitated by coupling to a Markovian reservoir. By combining numerical simulations with a field-theoretic analysis, we investigate the current fluctuations for this process and determine its asymptotic behavior. These findings demonstrate that dissipative bosonic transport belongs to the KPZ universality class and therefore, in spite of the drastic difference in the underlying particle statistics, it features the same coarse grained behavior as the corresponding asymmetric simple exclusion process (ASEP) for fermions. However, crucial differences between the two processes emerge when focusing on the full counting statistics of current fluctuations. By mapping both models to the physics of fluctuating interfaces, we find that dissipative transport of bosons and fermions can be understood as surface growth and erosion processes, respectively. Within this unified description, both the similarities and discrepancies between the full counting statistics of the transport are reconciled. Beyond purely theoretical interest, these findings are relevant for experiments with cold atoms or long-lived quasi-particles in nanophotonic lattices, where such transport scenarios can be realized.Comment: comments welcom

    Post-Collisional Transition from Subduction to Intraplate-type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere

    Get PDF
    Post-collisional magmatism in the southern Iberian and northwestern African continental margins contains important clues for the understanding of a possible causal connection between movements in the Earth's upper mantle, the uplift of continental lithosphere and the origin of circum-Mediterranean igneous activity. Systematic geochemical and geochronological studies (major and trace element, Sr–Nd–Pb-isotope analysis and laser 40Ar/39Ar-age dating) on igneous rocks provide constraints for understanding the post-collisional history of the southern Iberian and northwestern African continental margins. Two groups of magmatic rocks can be distinguished: (1) an Upper Miocene to Lower Pliocene (8·2–4·8 Ma), Si–K-rich group including high-K (calc-alkaline) and shoshonitic series rocks; (2) an Upper Miocene to Pleistocene (6·3–0·65 Ma), Si-poor, Na-rich group including basanites and alkali basalts to hawaiites and tephrites. Mafic samples from the Si–K-rich group generally show geochemical affinities with volcanic rocks from active subduction zones (e.g. Izu–Bonin and Aeolian island arcs), whereas mafic samples from the Si-poor, Na-rich group are geochemically similar to lavas found in intraplate volcanic settings derived from sub-lithospheric mantle sources (e.g. Canary Islands). The transition from Si-rich (subduction-related) to Si-poor (intraplate-type) magmatism between 6·3 Ma (first alkali basalt) and 4·8 Ma (latest shoshonite) can be observed both on a regional scale and in individual volcanic systems. Si–K-rich and Si-poor igneous rocks from the continental margins of southern Iberia and northwestern Africa are, respectively, proposed to have been derived from metasomatized subcontinental lithosphere and sub-lithospheric mantle that was contaminated with plume material. A three-dimensional geodynamic model for the westernmost Mediterranean is presented in which subduction of oceanic lithosphere is inferred to have caused continental-edge delamination of subcontinental lithosphere associated with upwelling of plume-contaminated sub-lithospheric mantle and lithospheric uplift. This process may operate worldwide in areas where subduction-related and intraplate-type magmatism are spatially and temporally associated

    Expanding the Portfolio by a Novel Monomeric Oleate Hydratase from Pediococcus parvulus

    Get PDF
    Oleate hydratases convert oleic acid into 10-hydroxy stearic acid, a valuable fine chemical, useful in lubricant and surfactant formulations. They are of large interest due to their high expression rates and solubility, however, they differ drastically by their overall stability and pH- and temperature ranges. To expand their portfolio, another oleate hydratase named OhyPp (originating from Pediococcus parvulus) was characterized. It is a close relative of the well-known oleate hydratase OhyRe from Rhodococcus erythropolis. OhyPp is only the second member of the monomeric oleate hydratase family with some surprising catalytic features. A distinct characteristic is OhyPp's higher affinity towards FAD compared to OhyRe's helping to understand and improve FAD binding in the future, which is a current drawback for the industrial application of oleate hydratases
    • 

    corecore