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Physical systems close to a quantum phase transition exhibit a divergent susceptibility, suggesting that
an arbitrarily high precision may be achieved by exploiting quantum critical systems as probes to estimate a
physical parameter. However, such an improvement in sensitivity is counterbalanced by the closing of the
energy gap, which implies a critical slowing down and an inevitable growth of the protocol duration. Here,
we design different metrological protocols that exploit the superradiant phase transition of the quantum
Rabi model, a finite-component system composed of a single two-level atom interacting with a single
bosonic mode. We show that, in spite of the critical slowing down, critical quantum optical probes can
achieve a quantum-enhanced time scaling of the sensitivity in frequency-estimation protocols.
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In a system close to a critical point, small variations of
physical parameters may lead to dramatic changes in the
equilibrium state properties. The possibility of exploiting
this sensitivity for metrological purposes is well known,
and it has already been applied in classical devices, e.g., in
superconducting transition-edge sensors [1]. Besides, the
development of quantum metrology has extensively shown
that quantum states can outperform their classical counter-
parts for sensing tasks [2]. Therefore, a question naturally
arises: what sensitivity can be achieved using interacting
systems close to a quantum-critical point?
In the last few years, this question has attracted growing

interest and it has been addressed by different methods
[3–11]. Many of these studies may be roughly divided in
two approaches. One of them is based on the time evolution
induced by a Hamiltonian close to a critical point [3,4].
In this approach, one prepares a probe system in a suit-
ably chosen state, lets it evolve following its critical
Hamiltonian, and finally measures it. This bears close
similarity to the standard interferometric paradigm of
quantum metrology [2]. The other approach is based on
equilibrium properties of critical systems [5–7,12]. It
consists of preparing and measuring the system ground
state in the Hamiltonian case, or the system steady-
state when driven-dissipative systems are considered. In
proximity of the phase transition the susceptibility of the
equilibrium state diverges, suggesting that an arbi-
trarily large estimation precision could be achieved.
Unfortunately, the time required to prepare the equilibrium
state also diverges, both in the Hamiltonian [13] and in the
driven-dissipative case [14,15], a behavior called critical
slowing down.

Recent results suggest that the dynamical and equilib-
rium approaches are equivalent for a large class of spin
systems [9]. It was shown that both approaches make it
possible to achieve the optimal scaling limit of precision
with respect to system size and protocol duration.
These results were obtained considering spin systems that
undergo quantum phase transitions in the thermo-
dynamic limit, where the number of constituents goes to
infinity. Another interesting class of quantum critical
systems is provided by light-matter interaction models
[16], for which superradiant quantum phase transitions can
be controllably implemented [17,18]. Recently, it has been
theoretically shown that quantum phase transitions can
appear also in quantum-optical systems with only a finite
number of components [19–22], where the thermo-
dynamic limit can be replaced by a scaling of the system
parameters [23].
In this Letter, we assess the metrological potential of a

finite-component quantum phase transition, explicitly tak-
ing into account the protocol duration. We design param-
eter-estimation protocols based on equilibrium properties,
considering both the Hamiltonian and the dissipative
setting. In particular, we consider the quantum Rabi model
[21], which exhibits a superradiant phase transition despite
involving only one spin interacting with a single bosonic
field. We find analytical expressions for the scaling of the
quantum Fisher information, and we find that this approach
allows one to measure both spin and bosonic frequency
with a favorable time scaling, in spite of the critical slowing
down. In particular, we show that for spin frequency
estimation our protocol exhibits time-scaling enhancement
with respect to the paradigmatic Ramsey protocol [24,25],
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while for bosonic frequency estimation it saturates the
Heisenberg limit.
Hamiltonian case.—Let us consider a spin interacting

with a single bosonic mode according to the quantum Rabi
Hamiltonian:

Ĥ ¼ ω0â†âþΩσ̂z þ λðâ† þ âÞσ̂x; ð1Þ
where ω0 is the frequency of the bosonic field, â and â† are
creation and annihilation operators of the field, σ̂x and σ̂z
are Pauli matrices associated with the spin, and λ is the
coupling parameter. We also define the renormalized coup-
ling parameter g≡ λ=

ffiffiffiffiffiffiffiffiffi
Ωω0

p
. In the limit η≡ ω0=Ω → 0,

this system exhibits a phase transition at g ¼ 1 [21,22]. We
will analyze different critical quantum-metrology protocols
that exploit this phase transition to estimate either the
spin (Ω) or the field (ω0) frequency, assuming in each case
that all other parameters are known. In particular, we
consider the following three-step protocol: first, the system
is initialized in its ground state for g ¼ 0; then, an adiabatic
sweep is performed varying the parameter g from 0 to
some desired value close to the critical point g ¼ 1; finally,
the measurement of a relevant observable is performed. The
measurement results can then be used to estimate the
desired physical parameter, as sketched in Fig. 1(a).
In order to evaluate the performances of these protocols,

we need first to characterize the system ground state as a
function of the system parameters. In the limit η → 0, the
system can be diagonalized using a Schrieffer-Wolff trans-
formation [21]. We apply the unitary Û ¼ eig

ffiffi
η

p ðâ†þâÞσ̂y to
Eq. (1), which gives ĤN ¼ Û Ĥ Û†, where

ĤN ¼ ω0â†âþΩσ̂z þ
ω0

2
g2σ̂zðâþ â†Þ2; ð2Þ

up to terms Oðω0

ffiffiffi
η

p Þ. The effective Hamiltonian ĤN

provides a faithful description of the system ground state
in the normal phase of the model. It is stable for g < 1,
whereas for g → 1 the system experiences a phase tran-
sition towards the superradiant phase. Here, we will focus
on the normal phase only, however, equivalent results can
be found applying the same methods to the superradiant
phase (see Supplemental Material [26]). In the normal
phase, we can diagonalize ĤN by projection in the lower
spin eigenspace and Bogoliubov transformation. The
ground state is given by jψNiðλ;Ω;ω0Þ ¼ ŜðξÞj0i ⊗ j↓i
up to terms Oð ffiffiffi

η
p Þ. We defined ξ ¼ − 1

4
logð1 − g2Þ, while

ŜðξÞ ¼ expfðξ=2Þðâ†Þ2 − ðξ�=2Þâ2g is a squeezing oper-
ator. The squeezing parameter diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation energy
ϵN ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

p
vanishes at the transition.

We are interested in the precise estimation of A (with
A ¼ Ω or ω0) obtained by performing measurements on the
ground state of the system. This precision is bounded
by the quantum Cramer-Rao (CR) bound: δ2A ≥ ðνIAÞ−1,
where ν is the number of independent measurement rounds,
and IA is the quantum fisher information (QFI) relative to
the parameter of interest A. Since the system is in a
pure state, the QFI may be computed exactly as IA ¼
4½h∂AψN j∂AψNi þ ðh∂AψN jψNiÞ2�. Close to the quantum
phase transition, the dominant term of the QFI is

IA ∼
1

32A2ð1 − gÞ2 ; ð3Þ

which means that the estimation of ω0 and Ω will yield the
same signal-to-noise ratio QA ¼ A2IA. Equation (3) shows
that IA diverges at the critical point g ¼ 1, i.e., an
arbitrarily large estimation precision could, in principle,
be obtained. This is consistent with previous studies on
critical metrology in light-matter systems [6,7,27,28]. To
verify whether this bound is saturable with standard
observables, we also study the Fisher information (FI) of
homodyne detection on the field only. This is illustrated in
Fig. 1, where we show QΩ versus g for different values of η
[panel (a)], and the ratio FI/QFI for homodyne detection of
the p̂ quadrature [panel (b)]. In the normal phase, this
homodyne measurement saturates the Cramer-Rao bound
for all values of g. The x̂ quadrature is always optimal also
in the superradiant phase and, in general, we found that
most quadratures allow one to achieve significant fractions
of the optimal precision in proximity of the critical point
(see Supplemental Material [26]). Notice that the homo-
dyne signature of the ground state will be a random signal
centered around 0. The relevant information is encoded in
the variance of this signal. Therefore, instead of averaging
out the random signal, we need to reconstruct its statistics.
This task requires repeated measurements; as the number of

(a)

(b) (c)

FIG. 1. (a) Schematic representation of the parameter-estima-
tion protocol, where the quantum critical sensor is used to
estimate the intensity of an external magnetic field. (b) Signal-
to-noise ratioQΩ versus g for the estimation of Ω, setting η ¼ 0.1
(thin dashed line), 0.2 (thin full line), and 0.01 (thick line). In the
normal phase, QΩ is independent of η for the value considered.
In the superradiant phase, there is a small correction which
depends on η, and that becomes negligible near the critical point.
(c) Ratio FI/QFI for homodyne measurement of the p̂ quadrature.
In the normal phase g < 1, the Cramer-Rao bound is attained for
all values of g.
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measurements ν increases, so will the precision, as per the
CR bound.
Analysis of resources.—Let us now assess the perfor-

mances of the proposed critical protocol against standard
quantum metrology protocols. For the estimation of
the bosonic frequency ω0, a benchmark is provided by
interferometric protocols involving a phase difference
Δϕ ¼ ω0T, where T is the evolution time. To ensure a
fair comparison, we must carefully account for the resour-
ces needed to implement the critical and interferometric
protocols. The relevant quantities to be considered are the
system evolution time T and the average number of photons
involved hN̂i. A lossless interferometric protocol has a
precision limited by the Heisenberg limit Iω0

∼ hN̂i2T2.
For the proposed critical protocol, we can readily compute
hN̂i: hψN jN̂jψNi ¼ sinh ξ2 ∼ 1

4
ð1 − g2Þ−1=2. Regarding the

duration T of the protocol, the relevant contribution is given
by the time required to perform the adiabatic evolution.
Because of the closing energy gap, the time needed to
perform the adiabatic protocol diverges as the critical point
is approached. However, the protocol time duration can be
optimized considering a general adaptative process during
which g evolves with a speed vðgÞ ¼ dg=dt.
Using adiabatic evolution theory (see the Supplemental

Material [26]), we look for optimal adiabatic procedures
that minimize the evolution time while ensuring that the
system will remain in the ground state during the evolution.
We find the following condition on the speed v of evolution
vðgÞ ∼ γω0ð1 − g2Þ3=2, where γ < 1 is a parameter which
controls the probability of exciting the system. As a result,
the time needed to sweep the coupling constant from 0 to
some value g ∼ 1 is given by

T ¼
Z

g

0

ds
vðsÞ ∼ γ−1ω−1

0 ð1 − gÞ−1=2: ð4Þ

This expression indeed diverges when g goes to 1. Upon
inserting the expressions for hN̂i and T into Eq. (3), we find

Iω0
∼ γ2hN̂i2T2; ð5Þ

i.e., the critical protocol allows one to estimate ω0 with the
same precision granted by interferometric protocols. In
other words, in spite of the critical slowing down, our
critical protocol in the Hamiltonian case achieves the
optimal Heisenberg-scaling precision for continuous-vari-
able systems, with respect to both energy and time. Similar
results have so far been obtained only for spin systems in
the thermodynamic limit [9]. Concerning the estimation of
the spin frequency, a natural benchmark is given by
Ramsey interferometry with a single spin. For noiseless
Ramsey interferometry, QFI scales like T2 [24,25]. By
contrast, in the critical case, we found using Eqs. (3)
and (4),

IΩ ∼
γ4ω4

0

8Ω2
T4; ð6Þ

i.e., our protocol achieves quartic scaling in the duration of
the protocol, while Ramsey interferometry only scales
quadratically. This is an unambiguous demonstration of
time-scaling enhancement for a critical metrological pro-
tocol in light-matter system. Note, however, that the
prefactor in Eq. (6) is very small, meaning that the critical
protocol could outperform Ramsey only for large time T,
that is, when operating very close to the critical point.
Dissipative process.—The above results are valid for

isolated systems. However, decoherence due to the inter-
action with the environment generally reduces the perfor-
mances of metrological protocols. In order to assess our
protocol in realistic conditions, let us now consider the
presence of both photon loss and spin decay. The dis-
sipative dynamics of the system is described by a master
equation (ME) of the form ∂tρ̂ ¼ −i½Ĥ; ρ̂� þ κL½â�ρ̂þ
ΓL½σ̂−�ρ̂, where the Lindblad terms read L½Â�ρ̂ ¼ 2Â ρ̂ Â†−
fÂ†Â; ρ̂g. Notice that we are considering a phenomeno-
logical master equation as we are interested in effective
implementations of the model [29]. In order to characterize
the dissipative case, we will first generalize the results
obtained in Ref. [30] to include spin decay; details can be
found in the Supplemental Material [26]. We assume
κ=ω0 ¼ Oð1Þ and Γ=Ω ¼ Oð1Þ, however our results can
be extended to smaller dissipation values. By considering
the spin-decay term explicitely and using Schrieffer-Wolff
transformation, we decouple the spin and field, and project
the spin into the j↓ih↓j subspace. This yields an effective
ME for the state of the bosonic field:

∂tρ̂bd ¼ −i½ω0â†â − Yðâþ â†Þ2; ρ̂bd�

þ κL½â�ðρ̂bdÞ þ
Γ
Ω
YL½âþ â†�ρ̂bd; ð7Þ

plus terms of orderOðω0

ffiffiffi
η

p Þ. We definedX¼Ω2=ðΓ2þΩ2Þ
and Y ¼ 1

4
ω0Xg2. Since this equation is quadratic in â, it

can be solved by a Gaussian ansatz. The dynamics is then
fully characterized by the evolution equation for the
covariance matrix σ of the state. The displacement vector
decays quickly to zero and may be safely discarded, so we
obtain ∂tσ ¼ Bσ þ σBT − 2κðσ − σLÞ, where

B ¼
�

0 ω0

4Y − ω0 0

�
;

and σL ¼ 1
2
fI þ Diag½0; 4YΓ=ðΩκÞ�g. This linear equation

may be solved exactly by diagonalization. Upon evaluating
the lowest eigenvalue, one may estimate the typical
time needed to reach the steady-state, T ∼ ðgc=2κÞðg−
gcÞ−1ð1þ ω2

0=κ
2Þ−1. This value diverges near the transi-

tion, indicating a critical slowing down. The steady state is
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a squeezeed (undisplaced) thermal state, with covariance
matrix given by

σ ¼
"

1
2

0

0
2−g2Xð1−δÞ

4

#
þ g2ð1þ δÞ
4ðg2c − g2Þ

"
1 κ

ω0

κ
ω0

ð κ
ω0
Þ2
#
;

with g2c ¼ ð1þ Γ2=Ω2Þð1þ κ2=ω2Þ and δ ¼ ðω0Γ=ΩκÞ. In
this dissipative setting, the system still experiences a phase
transition for g → gc. Both the squeezing and thermal
energies of the steady-state diverge near the critical point.
Since this state is Gaussian and its first-moment vector is
zero, the QFI may be evaluated as (dots denote derivative
with respect to the parameter A under consideration)

IA ¼ 8

16d4 − 1

�
d4Tr½ðσ−1 _σÞ2� − 1

4
Tr½ð _σKÞ2�

�
;

with d ¼ ffiffiffiffiffiffiffiffiffiffi
Detσ

p
and K is the symplectic matrix [31]. The

leading terms of the QFIs for the estimation of frequencies
are given by

Idiss
ω0

∼
2Ω

Ωκ þ ω0Γ

�
κ2 − ω2

0

κ2 þ ω2
0

�
2

hN̂iT;

Idiss
Ω ∼

�
Γ2 − Ω2

Γ2 þΩ2

�
2 κ2

2Ω2

�
1þ ω2

0

κ2

�
2

T2: ð8Þ

Equation (8) shows that for the estimation of ω0, the
presence of dissipation restores the shot-noise scaling,
similar to what happens in a lossy interferometric protocols.
In the case in which the parameter to be estimated is the
spin frequency Ω, the presence of dissipation replaces the
quartic time scaling obtained in the Hamiltonian case (6) by
a quadratic one. However, the QFI of a Ramsey protocol in
the presence of spin decay at rate Γ is given by IΩ ¼ T=Γ,
and so it is linear in time. This result shows that the time-
scaling enhancement of our critical protocol against the
benchmark persists in the dissipative case for spin-
frequency estimation.
Discussion.—Let us now comment on the nature, the

limitations, and the potential experimental implementations
of the considered protocols. First of all, we emphasize that
our protocol exploits the diverging susceptibility near the
transition, but it does not require to actually cross the
critical point, contrary to what is used in transition-edge
sensors [1]. The adiabatic evolution of the ground state is
equivalent to applying a (time-dependent) squeezing
Hamiltonian to the system. This procedure can be fit in
the framework of quantum control, where it has been
shown [32] that a quartic time scaling can be reached for the
estimation of the frequency of rotation of a magnetic field.
Concerning the estimation of the spin frequency Ω, our

critical protocol achieves time-scaling enhancement com-
pared to the Ramsey protocol. However, since the prefactor
in Eqs. (6) and (8) is small, the critical protocol could

outperform Ramsey schemes only for long protocol
duration, i.e., when operating in close proximity of the
critical point. In this region, the quartic and higher-order
terms in the Schrieffer-Wolff expansion of the Hamiltonian,
which have been neglected in order to obtain exact results,
become relevant (Ref. [21] and the Supplemental Material
[26]). A detailed study of the behavior of the QFI in this
region requires numerical methods and goes beyond the
reach of this work.
The proposed protocols could be implemented using

analog quantum simulation techniques, which have already
been experimentally applied for the quantum Rabi model in
extreme regimes of parameters [33,34] using different
quantum technologies, such as cold atoms [35], super-
conducting circuits [36], and trapped ions [37]. Finite-
component driven-dissipative phase transitions can be
implemented with bath-engineering techniques [29].
Notice that these methods allow one to continuously tune
the effective physical parameters, making it possible to
reach and to implement the required adiabatic passage.
Furthermore, it has been recently shown [23] that finite-
component phase transitions can be observed also with
weakly anharmonic quantum resonators, so our results
could be extended to include a nonlinear quantum resonator
implemented with circuit-QED devices [38] and electro-
mechanical systems [39].
Conclusions and outlook.—Our results show that, in

spite of the critical slowing down, critical quantum-optical
systems represent a compelling tool for quantum metrol-
ogy. In addition, we have demonstrated the metrological
potential of finite-component quantum phase transitions, a
result that has both practical and fundamental conse-
quences. First, finite-component criticalities make it pos-
sible to substantially reduce the system size and complexity
at the cost of accessing an unusual regime of parameters.
Furthermore, we have shown that the adiabatic protocol can
be optimized to reduce the protocol duration. This result
reveals the potential of quantum-control schemes to reduce
the time required to perform the adiabatic sweep in critical
quantum metrology. Notice that in a finite-component
system, quantum-control techniques could be applied with-
out implementing complex nonlocal operations, as it is
the case for many-body critical systems. Our study paves
the way to the application of other criticalities appearing
in quantum-optical models [23,40–42] in quantum metrol-
ogy. Finally, by focusing on the time scaling and on a
finite-component system, our analysis challenges the
standard framework in which the fundamental resources
needed to achieve metrological quantum advantage are
assessed [43–46].
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