3,881 research outputs found

    Synthesis of strontium ferrite/iron oxide exchange coupled nano-powders with improved energy product for rare earth free permanent magnet applications

    Full text link
    We present a simple, scalable synthesis route for producing exchange coupled soft/hard magnetic composite powder that outperforms pure soft and hard phase constituents. Importantly, the composites is iron oxide based (SrFe12O19 and Fe3O4) and contain no rare earth or precious metal. The two step synthesis process consists of first precipitating, an Iron oxide/hydroxide precursor directly on top of SrFe12O19 nano-flakes, ensuring a very fine degree of mixing between the hard and the soft magnetic phases. We then use a second step that serves to reduce the precursor to create the proper soft magnetic phase and create the intimate interface necessary for exchange coupling. We establish a clear processing window; at temperatures below this window the desired soft phase is not produced, while higher temperatures result in deleterious reaction at the soft/hard phase interfaces, causing an improper ratio of soft to hard phases. Improvements of Mr, Ms, and (BH)max are 42%, 29% and 37% respectively in the SrFe12O19/Fe3O4 composite compared to pure hard phase (SrFe12O19). We provide evidence of coupling (exchange spring behavior) with hysteresis curves, first order reversal curve (FORC) analysis and recoil measurements.Comment: in J. Mater. Chem. C, 201

    Correlates and Predictors of Employee Turnover Intentions in the Postal Industry! A Case Study of the Omaha Hub of United Parcel Service

    Get PDF
    The purpose of this study was to identify the correlates and predictors of turnover intentions among manual laborers. The study was exploratory and used a modification of the Rusbult and Farrell (1983) investment model as its theoretical framework. Simple correlation analysis uncovered no significant relationships between the fifteen independent variables and turnover intention, with one exception; there was a significant correlation between intent to retire and turnover intention. Therefore, further analysis was conducted by testing each independent variable against each item of turnover intentions. The independent variables that were found to be significantly correlated with the items of turnover intentions were then entered into a regression analysis to test for predictive potential. Of the independent variables that were included in the regression analysis, three emerged as predictors of various items of turnover intentions at the .05 level of significance: Alternatives, distributive justice, and active pursuit o f degree. Of those, alternatives is the only one that showed a pattern of predictability. The Rusbult and Farrell model posits that job costs and job rewards lead to satisfaction which, along with alternatives and investments, predict commitment, of which turnover is a function. However, the present study found, to the contrary, that among manual laborers, job costs, job rewards, job satisfaction, and investment had no effect on turnover intent. Instead, the variable perception of alternatives was the only one that predicted turnover intentions. One reason these findings differ from those of previous research may be the fact that turnover literature has largely overlooked the category of manual laborers, which is structurally dissimilar from the traditionally studied categories of workers

    Stability analysis of sonic horizons in Bose-Einstein condensates

    Get PDF
    We examine the linear stability of various configurations in Bose-Einstein condensates with sonic horizons. These configurations are chosen in analogy with gravitational systems with a black hole horizon, a white hole horizon and a combination of both. We discuss the role of different boundary conditions in this stability analysis, paying special attention to their meaning in gravitational terms. We highlight that the stability of a given configuration, not only depends on its specific geometry, but especially on these boundary conditions. Under boundary conditions directly extrapolated from those in standard General Relativity, black hole configurations, white hole configurations and the combination of both into a black hole--white hole configuration are shown to be stable. However, we show that under other (less stringent) boundary conditions, configurations with a single black hole horizon remain stable, whereas white hole and black hole--white hole configurations develop instabilities associated to the presence of the sonic horizons.Comment: 14 pages, 7 figures (reduced resolution

    Large Solar Neutrino Mixing in an Extended Zee Model

    Full text link
    The Zee model, which employs the standard Higgs scalar (ϕ\phi) with its duplicate (ϕ\phi^\prime) and a singly charged scalar (h+h^+), can utilize two global symmetries associated with the conservation of the numbers of ϕ\phi and ϕ\phi^\prime, Nϕ,ϕN_{\phi,\phi^\prime}, where Nϕ+NϕN_\phi+N_{\phi^\prime} coincides with the hypercharge while NϕNϕN_\phi-N_{\phi^\prime} (X\equiv X) is a new conserved charge, which is identical to LeLμLτL_e-L_\mu-L_\tau for the left-handed leptons. Charged leptons turn out to have ee-μ\mu and ee-τ\tau mixing masses, which are found to be crucial for the large solar neutrino mixing. In an extended version of the Zee model with an extra triplet Higgs scalar (s), neutrino oscillations are described by three steps: 1) the maximal atmospheric mixing is induced by democratic mass terms supplied by ss with XX=2 that can initiate the type II seesaw mechanism for the smallness of these masses; 2) the maximal solar neutrino mixing is triggered by the creation of radiative masses by h+h^+ with XX = 0; 3) the large solar neutrino mixing is finally induced by a νμ\nu_\mu-ντ\nu_\tau mixing arising from the rotation of the radiative mass terms as a result of the diagonalization that converts ee-μ\mu and ee-τ\tau mixing masses into the electron mass.Comment: RevTex, 10 pages including one figure page, to be published in Int. J. Mod. Phys. A (2002

    An Expanding HI Photodissociated Region Associated with the Compact HII Region G213.880-11.837 in the GGD 14 Complex

    Full text link
    We present high angular and spectral resolution HI 21~cm line observations toward the cometary-shaped compact HII region G213.880-11.837 in the GGD~14 complex.The kinematics and morphology of the photodissociated region, traced by the HI line emission, reveal that the neutral gas is part of an expanding flow. The kinematics of the HI gas along the major axis of G213.880-11.837 shows that the emission is very extended toward the SE direction, reaching LSR radial velocities in the tail of about 14 km/s. The ambient LSR radial velocity of the molecular gas is 11.5 km/s, which suggests a champagne flow of the HI gas. This is the second (after G111.61+0.37) cometary HII/HI region known.Comment: Accepted for publication in the Astronomical Journal (10 pages, 4 figures, 1 table

    Fairness and Efficiency in DAG-based Cryptocurrencies

    Full text link
    Bitcoin is a decentralised digital currency that serves as an alternative to existing transaction systems based on an external central authority for security. Although Bitcoin has many desirable properties, one of its fundamental shortcomings is its inability to process transactions at high rates. To address this challenge, many subsequent protocols either modify the rules of block acceptance (longest chain rule) and reward, or alter the graphical structure of the public ledger from a tree to a directed acyclic graph (DAG). Motivated by these approaches, we introduce a new general framework that captures ledger growth for a large class of DAG-based implementations. With this in hand, and by assuming honest miner behaviour, we (experimentally) explore how different DAG-based protocols perform in terms of fairness, i.e., if the block reward of a miner is proportional to their hash power, as well as efficiency, i.e. what proportion of user transactions a ledger deems valid after a certain length of time. Our results demonstrate fundamental structural limits on how well DAG-based ledger protocols cope with a high transaction load. More specifically, we show that even in a scenario where every miner on the system is honest in terms of when they publish blocks, what they point to, and what transactions each block contains, fairness and efficiency of the ledger can break down at specific hash rates if miners have differing levels of connectivity to the P2P network sustaining the protocol

    Probing semiclassical analogue gravity in Bose--Einstein condensates with widely tunable interactions

    Full text link
    Bose-Einstein condensates (BEC) have recently been the subject of considerable study as possible analogue models of general relativity. In particular it was shown that the propagation of phase perturbations in a BEC can, under certain conditions, closely mimic the dynamics of scalar quantum fields in curved spacetimes. In two previous articles [gr-qc/0110036, gr-qc/0305061] we noted that a varying scattering length in the BEC corresponds to a varying speed of light in the ``effective metric''. Recent experiments have indeed achieved a controlled tuning of the scattering length in Rubidium 85. In this article we shall discuss the prospects for the use of this particular experimental effect to test some of the predictions of semiclassical quantum gravity, for instance, particle production in an expanding universe. We stress that these effects are generally much larger than the Hawking radiation expected from causal horizons, and so there are much better chances for their detection in the near future.Comment: 18 pages; uses revtex4. V2: Added brief discussion of "Bose-Nova" phenomenon, and appropriate reference
    corecore