4,870 research outputs found

    Root System Characteristics of Two Soybean Isolines Undergoing Water Stress Condition

    Get PDF
    Environmental stress may have a differential influence on root development of soybean [Glycine max (L.) Merr.] isolines which vary in pubescence density. Root length density and root dry matter distribution as a function of depth and distance from the row were determined for two isolines of \u27Harosoy\u27 soybean in association with an experiment designed to evaluate the influence of epidermal pubescence on root development, water use, and photosynthetic characteristics of the two isolines. The isolines, Harosoy normal (HN) and Harosoy dense (HD), differed in the density of trichomes on the epidermal surfaces of leaves, stems, and pods. The study was conducted at the Univ. of Nebraska Field Laboratory at Mead, Nebr., during the 1980 growing season. Root samples were collected 47 (full bloom) and 78 (beginning seed) days after planting. Until the first sampling, soil water content was high at all depths, and roots were concentrated in the surface 0.15-111 layer, especially under the row. Eighty percent of the roots were found within the upper 0.30 m. By 78 days after planting and after 30 days of drought, root length density was greatest at the 0.90 to 1.20-m layer; 80% of the roots pared to were found within the 0 to 1.2-m layer; and uniform lateral distribution was observed. Harosoy dense pubescence isoline tended to have a greater root density, to explore deeper into the soil, and to extract more soil water during the drought than did the normal pubescence isoliie. However, the rate of water extraction (per unit root length) was greater for the HN isoline

    Submillimeter H2O masers in water-fountain nebulae

    Get PDF
    We report the first detection of submillimeter water maser emission toward water-fountain nebulae, which are post-AGB stars that exhibit high-velocity water masers. Using APEX we found emission in the ortho-H2O (10_29-9_36) transition at 321.226 GHz toward three sources: IRAS 15445-5449, IRAS 18043-2116 and IRAS 18286-0959. Similarly to the 22 GHz masers, the submillimeter water masers are expanding with a velocity larger than that of the OH masers, suggesting that these masers also originate in fast bipolar outflows. In IRAS 18043-2116 and IRAS 18286-0959, which figure among the sources with the fastest water masers, the velocity range of the 321 GHz masers coincides with that of the 22 GHz masers, indicating that they likely coexist. Towards IRAS 15445-5449 the submillimeter masers appear in a different velocity range, indicating that they are tracing different regions. The intensity of the submillimeter masers is comparable to that of the 22 GHz masers, implying that the kinetic temperature of the region where the masers originate should be Tk > 1000 K. We propose that the passage of two shocks through the same gas can create the conditions necessary to explain the presence of strong high-velocity 321 GHz masers coexisting with the 22 GHz masers in the same region.Comment: 4 pages, 1 figure. Accepted for publication in A&A Letter

    A Quantum Cosmological Model With Static and Dynamic Wormholes

    Get PDF
    Quantization is performed of a Friedmann-Robertson-Walker universe filled with a conformally invariant scalar field and a perfect fluid with equation of state p=αρp=\alpha \rho. A well-known discrete set of static quantum wormholes is shown to exist for radiation (α=1/3\alpha =1/3), and a novel continuous set is found for cosmic strings (α=1/3\alpha = -1/3), the latter states having throat radii of any size. In both cases wave-packet solutions to the Wheeler-DeWitt equation are obtained with all the properties of evolving quantum wormholes. In the case of a radiation fluid, a detailed analysis of the quantum dynamics is made in the context of the Bohm-de Broglie interpretation. It is shown that a repulsive quantum force inversely proportional to the cube of the scale factor prevents singularities in the quantum domain. For the states considered, there are no particle horizons either.Comment: LaTex file, 13 pages. To appear in General Relativity and Gravitatio

    The Circumstellar Structure and Excitation Effects around the Massive Protostar Cepheus A HW 2

    Full text link
    We report SMA 335 GHz continuum observations with angular resolution of ~0.''3, together with VLA ammonia observations with ~1'' resolution toward Cep A HW 2. We find that the flattened disk structure of the dust emission observed by Patel et al. is preserved at the 0.''3 scale, showing an elongated structure of ~$0.''6 size (450 AU) peaking on HW 2. In addition, two ammonia cores are observed, one associated with a hot-core previously reported, and an elongated core with a double peak separated by ~1.''3 and with signs of heating at the inner edges of the gas facing HW 2. The double-peaked ammonia structure, as well as the double-peaked CH3CN structure reported previously (and proposed to be two independent hot-cores), surround both the dust emission as well as the double-peaked SO2 disk structure found by Jimenez-Serra et al. All these results argue against the interpretation of the elongated dust-gas structure as due to a chance-superposition of different cores; instead, they imply that it is physically related to the central massive object within a disk-protostar-jet system.Comment: 12 pages, 3 figures; accepted for publication in the Astrophysical Journa

    Hilbert space of wormholes

    Get PDF
    Wormhole boundary conditions for the Wheeler--DeWitt equation can be derived from the path integral formulation. It is proposed that the wormhole wave function must be square integrable in the maximal analytic extension of minisuperspace. Quantum wormholes can be invested with a Hilbert space structure, the inner product being naturally induced by the minisuperspace metric, in which the Wheeler--DeWitt operator is essentially self--adjoint. This provides us with a kind of probabilistic interpretation. In particular, giant wormholes will give extremely small contributions to any wormhole state. We also study the whole spectrum of the Wheeler--DeWitt operator and its role in the calculation of Green's functions and effective low energy interactions.Comment: 23 pages, 2 figures available upon request, REVTE

    Dynamics for a 2-vertex Quantum Gravity Model

    Get PDF
    We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N) invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.Comment: 28 pages, v2: typos correcte

    Agronomic Evaluation of Twenty Ecotypes of \u3cem\u3eLeucaena\u3c/em\u3e spp. for Acid Soil Conditions in México

    Get PDF
    Leucaena leucocephala Lam. (de Witt) has been shown to be a good forage producer and to posses good persistence under grazing conditions in México tolerating well the management of local cattlemen (Quero et al., 2004). The Leucaena genus is native to Central America and Mexico (Hughes, 1998), but L. leucocephala is a low producer under acid soil conditions. The natural diversity is a good source of resistance to acid soil conditions resistance and to other adverse factors. Several Leucaena accessions were evaluated for production under acid soil conditions in tropical Mexico

    Fairness and Efficiency in DAG-based Cryptocurrencies

    Full text link
    Bitcoin is a decentralised digital currency that serves as an alternative to existing transaction systems based on an external central authority for security. Although Bitcoin has many desirable properties, one of its fundamental shortcomings is its inability to process transactions at high rates. To address this challenge, many subsequent protocols either modify the rules of block acceptance (longest chain rule) and reward, or alter the graphical structure of the public ledger from a tree to a directed acyclic graph (DAG). Motivated by these approaches, we introduce a new general framework that captures ledger growth for a large class of DAG-based implementations. With this in hand, and by assuming honest miner behaviour, we (experimentally) explore how different DAG-based protocols perform in terms of fairness, i.e., if the block reward of a miner is proportional to their hash power, as well as efficiency, i.e. what proportion of user transactions a ledger deems valid after a certain length of time. Our results demonstrate fundamental structural limits on how well DAG-based ledger protocols cope with a high transaction load. More specifically, we show that even in a scenario where every miner on the system is honest in terms of when they publish blocks, what they point to, and what transactions each block contains, fairness and efficiency of the ledger can break down at specific hash rates if miners have differing levels of connectivity to the P2P network sustaining the protocol

    Neutrino fluxes from CNO cycle in the Sun in the non stationary case with mixing

    Full text link
    The computational analyses is presented of the non stationary case with mixing of the solar model when the neutrino flux F13F_{13} from the decay of 13N^{13}N is higher than a standard solar model predictsComment: 6 pages, 3figure
    corecore