24 research outputs found

    Partición de la evapotranspiración usando isótopos estables en estudios ecohidrológicos

    Get PDF
    La ecohidrología como disciplina emergente pretende generar conocimiento para entender procesos fundamentales de los ecosistemas en función de la dinámica del ciclo hidrológico. Durante la temporada de lluvias, que coincide con las altas temperaturas en las zonas semiáridas, se desencadenan diversos procesos ecológicos relacionados con el intercambio de agua entre la superficie terrestre y la atmósfera, vía evapotranspiración (ET). A pesar de que existen diferentes metodologías para estimar ET, conocer la proporción de sus componentes, evaporación del suelo (Es) y transpiración de la vegetación (T), en escalas congruentes es todavía complicado. El presente trabajo tiene como objetivo conocer la proporción de T/ET durante un día de la temporada de lluvias en un ecosistema semiárido del noroeste de México, usando isótopos estables como trazadores de los diferentes componentes de la ET. Durante el 24 de julio de 2007 se obtuvo que la proporción T/ET fue de 59 ± 6%, pero mostró una variación importante entre la mañana y la tarde, ya que la T/ET fue de 86 ± 21% por la mañana y decayó a 46 ± 9% en la tarde. Estos resultados apuntan a que durante la mañana la vegetación se mantiene más activa, contribuyendo más a la ET vía T, en contraste con lo que se observa en la tarde. Con el uso de isótopos estables es posible separar la ET en sus componentes en nivel de ecosistema, lo cual permite el avance del conocimiento ecohidrológico

    Determination of crop evapotranspiration of table grapes in a semi-arid region of Northwest Mexico using multi-spectral vegetation index

    No full text
    The main goal of this research is to develop and to evaluate a relationship established between Normalized Difference Vegetation Index (NDVI) and crop coefficient (K-c) for estimating crop evapotranspiration (ETc) of table grapes vineyards (Vitis vinifera L., cvs. Perlette and Superior) in the semi-arid region of Northwest Mexico. Two consecutive growing seasons (2005 and 2006) of continuous measurements of ETc with the eddy covariance system were used to test the performance of the K-c-NDVI relationship. An exponential relation relating K-c to NDVI (R-2 = 0.63) is proposed and tested here as the basis for calculating ETc. The obtained results indicate that the K-c-NDVI approach estimates ETc reasonably well over two growing seasons. The root mean square error (RMSE) between measured and derived ETc from NDVI during 2005 and 2006 were respectively about 0.45 and 0.76 mm day(-1). Some discrepancies between measured and simulated ETc occurred when NDVI saturates at high values, causing the under-estimation of evapotranspiration

    Combined use of optical and radar satellite data for the monitoring of irrigation and soil moisture of wheat crops

    No full text
    The objective of this study is to get a better understanding of radar signal over irrigated wheat fields and to assess the potentialities of radar observations for the monitoring of soil moisture. Emphasis is put on the use of high spatial and temporal resolution satellite data (Envisat/ASAR and Formosat-2). Time series of images were collected over the Yaqui irrigated area (Mexico) throughout one agricultural season from December 2007 to May 2008, together with measurements of soil and vegetation characteristics and agricultural practices. The comprehensive analysis of these data indicates that the sensitivity of the radar signal to vegetation is masked by the variability of soil conditions. On-going irrigated areas can be detected all over the wheat growing season. The empirical algorithm developed for the retrieval of topsoil moisture from Envisat/ASAR images takes advantage of the Formosat-2 instrument capabilities to monitor the seasonality of wheat canopies. This monitoring is performed using dense time series of images acquired by Formosat-2 to set up the SAFY vegetation model. Topsoil moisture estimates are not reliable at the timing of plant emergence and during plant senescence. Estimates are accurate from tillering to grain filling stages with an absolute error about 9% (0.09 m<sup>3</sup> m<sup>−3</sup>, 35% in relative value). This result is attractive since topsoil moisture is estimated at a high spatial resolution (i.e. over subfields of about 5 ha) for a large range of biomass water content (from 5 and 65 t ha<sup>−1</sup> independently from the viewing angle of ASAR acquisition (incidence angles IS1 to IS6)
    corecore