17 research outputs found

    Chemical Optimization of Whole-Cell Transfer Hydrogenation Using Carbonic Anhydrase as Host Protein

    Get PDF
    Artificial metalloenzymes combine a synthetic metallocofactor with a protein scaffold and can catalyze abiotic reactions in vivo. Herein, we report on our efforts to valorize human carbonic anhydrase II as a scaffold for whole-cell transfer hydrogenation. Two platforms were tested: periplasmic compartmentalization and surface display in Escherichia coli. A chemical optimization of an IrCp* cofactor was performed. This led to 90 turnovers in the cell, affording a 69-fold increase in periplasmic product formation over the previously reported, sulfonamide-bearing IrCp* cofactor. These findings highlight the versatility of carbonic anhydrase as a promising scaffold for whole-cell catalysis with artificial metalloenzymes

    E. coli surface display of streptavidin for directed evolution of an allylic deallylase

    Get PDF
    Artificial metalloenzymes (ArMs hereafter) combine attractive features of both homogeneous catalysts and enzymes and offer the potential to implement new-to-nature reactions in living organisms. Herein we present an E. coli surface display platform for streptavidin (Sav hereafter) relying on an Lpp-OmpA anchor. The system was used for the high throughput screening of a bioorthogonal CpRu-based artificial deallylase (ADAse) that uncages an allylcarbamate-protected aminocoumarin 1. Two rounds of directed evolution afforded the double mutant S112M-K121A that displayed a 36-fold increase in surface activity vs. cellular background and a 5.7-fold increased in vitro activity compared to the wild type enzyme. The crystal structure of the best ADAse reveals the importance of mutation S112M to stabilize the cofactor conformation inside the protein

    Renewable production of high density jet fuel precursor sesquiterpenes from <i>Escherichia coli</i>

    Get PDF
    Abstract Background Aviation fuels are an important target of biofuels research due to their high market demand and competitive price. Isoprenoids have been demonstrated as good feedstocks for advanced renewable jet fuels with high energy density, high heat of combustion, and excellent cold-weather performance. In particular, sesquiterpene compounds (C15), such as farnesene and bisabolene, have been identified as promising jet fuel candidates. Results In this study, we explored three sesquiterpenes—epi-isozizaene, pentalenene and α-isocomene—as novel jet fuel precursors. We performed a computational analysis to calculate the energy of combustion of these sesquiterpenes and found that their specific energies are comparable to commercial jet fuel A-1. Through heterologous MVA pathway expression and promoter engineering, we produced 727.9 mg/L epi-isozizaene, 780.3 mg/L pentalenene and 77.5 mg/L α-isocomene in Escherichia coli and 344 mg/L pentalenene in Saccharomyces cerevisiae. We also introduced a dynamic autoinduction system using previously identified FPP-responsive promoters for inducer-free production and managed to achieve comparable amounts of each compound. Conclusion We produced tricyclic sesquiterpenes epi-isozizaene, pentalenene and α-isocomene, promising jet fuel feedstocks at high production titers, providing novel, sustainable alternatives to petroleum-based jet fuels

    Discovery of novel geranylgeranyl reductases and characterization of their substrate promiscuity

    Get PDF
    Abstract Background Geranylgeranyl reductase (GGR) is a flavin-containing redox enzyme that hydrogenates a variety of unactivated polyprenyl substrates, which are further processed mostly for lipid biosynthesis in archaea or chlorophyll biosynthesis in plants. To date, only a few GGR genes have been confirmed to reduce polyprenyl substrates in vitro or in vivo. Results In this work, we aimed to expand the confirmed GGR activity space by searching for novel genes that function under amenable conditions for microbial mesophilic growth in conventional hosts such as Escherichia coli or Saccharomyces cerevisiae. 31 putative GGRs were selected to test for potential reductase activity in vitro on farnesyl pyrophosphate, geranylgeranyl pyrophosphate, farnesol (FOH), and geranylgeraniol (GGOH). We report the discovery of several novel GGRs exhibiting significant activity toward various polyprenyl substrates under mild conditions (i.e., pH 7.4, T = 37 °C), including the discovery of a novel bacterial GGR isolated from Streptomyces coelicolor. In addition, we uncover new mechanistic insights within several GGR variants, including GGR-mediated phosphatase activity toward polyprenyl pyrophosphates and the first demonstration of completely hydrogenated GGOH and FOH substrates. Conclusion These collective results enhance the potential for metabolic engineers to manufacture a variety of isoprenoid-based biofuels, polymers, and chemical feedstocks in common microbial hosts such as E. coli or S. cerevisiae
    corecore