292 research outputs found

    A comprehensive treatment of electromagnetic interactions and the three-body spectator equations

    Full text link
    We present a general derivation the three-body spectator (Gross) equations and the corresponding electromagnetic currents. As in previous paper on two-body systems, the wave equations and currents are derived from those for Bethe-Salpeter equation with the help of algebraic method using a concise matrix notation. The three-body interactions and currents introduced by the transition to the spectator approach are isolated and the matrix elements of the e.m. current are presented in detail for system of three indistinguishable particles, namely for elastic scattering and for two and three body break-up. The general expressions are reduced to the one-boson-exchange approximation to make contact with previous work. The method is general in that it does not rely on introduction of the electromagnetic interaction with the help of the minimal replacement. It would therefore work also for other external fields

    Introducing a rainfall compound distribution model based on weather patterns sub-sampling

    Get PDF
    This paper presents a probabilistic model for daily rainfall, using sub-sampling based on meteorological circulation. We classified eight typical but contrasted synoptic situations (weather patterns) for France and surrounding areas, using a "bottom-up" approach, i.e. from the shape of the rain field to the synoptic situations described by geopotential fields. These weather patterns (WP) provide a discriminating variable that is consistent with French climatology, and allows seasonal rainfall records to be split into more homogeneous sub-samples, in term of meteorological genesis. <br><br> First results show how the combination of seasonal and WP sub-sampling strongly influences the identification of the asymptotic behaviour of rainfall probabilistic models. Furthermore, with this level of stratification, an asymptotic exponential behaviour of each sub-sample appears as a reasonable hypothesis. This first part is illustrated with two daily rainfall records from SE of France. <br><br> The distribution of the multi-exponential weather patterns (MEWP) is then defined as the composition, for a given season, of all WP sub-sample marginal distributions, weighted by the relative frequency of occurrence of each WP. This model is finally compared to Exponential and Generalized Pareto distributions, showing good features in terms of robustness and accuracy. These final statistical results are computed from a wide dataset of 478 rainfall chronicles spread on the southern half of France. All these data cover the 1953–2005 period

    Deeply Virtual Compton Scattering on Spin-1 Nuclei

    Get PDF
    We consider the Generalized Parton Distributions for spin-1 nuclei in general and on the deuteron in particular. We use the impulse approximation to obtain a convolution model for them. Sum rules are used to check the validity of the approach and to estimate the importance of higher Fock-space states in the deuteron. Numerical predictions for the Beam Spin Asymmetry in deeply virtual Compton scattering are presented.Comment: 4 pages, Talk given at the XVIth International Conference on Particles and Nuclei (PANIC02), Osaka, Japan, 30 September 4 October 200

    Sensitivity of tensor analyzing power in the process d+pd+Xd+p\to d+X to the longitudinal isoscalar form factor of the Roper resonance electroexcitation

    Get PDF
    The tensor analyzing power of the process d+pd+Xd + p \to d + X, for forward deuteron scattering in the momentum interval 3.7 to 9 GeV/c, is studied in the framework of ω\omega exchange in an algebraic collective model for the electroexcitation of nucleon resonances. We point out a special sensitivity of the tensor analyzing power to the isoscalar longitudinal form factor of the Roper resonance excitation. The main argument is that the S11(1535)S_{11}(1535), D13(1520)D_{13}(1520) and S11(1650)S_{11}(1650) resonances have only isovector longitudinal form factors. It is the longitudinal form factor of the Roper excitation, which plays an important role in the tt-dependence of the tensor analyzing power. We discuss possible evidence of swelling of hadrons with increasing excitation energy.Comment: 12 pages, 10 figure

    Comparison of Relativistic Nucleon-Nucleon Interactions

    Get PDF
    We investigate the difference between those relativistic models based on interpreting a realistic nucleon-nucleon interaction as a perturbation of the square of a relativistic mass operator and those models that use the method of Kamada and Gl\"ockle to construct an equivalent interaction to add to the relativistic mass operator. Although both models reproduce the phase shifts and binding energy of the corresponding non-relativistic model, they are not scattering equivalent. The example of elastic electron-deuteron scattering in the one-photon-exchange approximation is used to study the sensitivity of three-body observables to these choices. Our conclusion is that the differences in the predictions of the two models can be understood in terms of the different ways in which the relativistic and non-relativistic SS-matrices are related. We argue that the mass squared method is consistent with conventional procedures used to fit the Lorentz-invariant cross section as a function of the laboratory energy.Comment: Revtex 13 pages, 5 figures, corrected some typo

    Analytical Form of the Deuteron Wave Function Calculated within the Dispersion Approach

    Get PDF
    We present a convenient analytical parametrization of the deuteron wave function calculated within dispersion approach as a discrete superposition of Yukawa-type functions, in both configuration and momentum spaces.Comment: 3 pages, 2 figure; several minor corrections adde

    Generalized parton distributions in the deuteron

    Get PDF
    We introduce generalized quark and gluon distributions in the deuteron, which can be measured in exclusive processes like deeply virtual Compton scattering and meson electroproduction. We discuss the basic properties of these distributions, and point out how they probe the interplay of nucleon and parton degrees of freedom in the deuteron wave function

    In search for the sources of plastic marine litter that contaminates the Easter Island Ecoregion

    Get PDF
    Subtropical gyres are the oceanic regions where plastic litter accumulates over long timescales, exposing surrounding oceanic islands to plastic contamination, with potentially severe consequences on marine life. Islands’ exposure to such contaminants, littered over long distances in marine or terrestrial habitats, is due to the ocean currents that can transport plastic over long ranges. Here, this issue is addressed for the Easter Island ecoregion (EIE). High-resolution ocean circulation models are used with a Lagrangian particle-tracking tool to identify the connectivity patterns of the EIE with industrial fishing areas and coastline regions of the Pacific basin. Connectivity patterns for “virtual” particles either floating (such as buoyant macroplastics) or neutrally-buoyant (smaller microplastics) are investigated. We find that the South American shoreline between 20°S and 40°S, and the fishing zone within international waters off Peru (20°S, 80°W) are associated with the highest probability for debris to reach the EIE, with transit times under 2 years. These regions coincide with the most-densely populated coastal region of Chile and the most-intensely fished region in the South Pacific. The findings offer potential for mitigating plastic contamination reaching the EIE through better upstream waste management. Results also highlight the need for international action plans on this important issue

    Point-Form Analysis of Elastic Deuteron Form Factors

    Full text link
    Point-form relativistic quantum mechanics is applied to elastic electron-deuteron scattering. The deuteron is modeled using relativistic interactions that are scattering-equivalent to the nonrelativistic Argonne v18v_{18} and Reid '93 interactions. A point-form spectator approximation (PFSA) is introduced to define a conserved covariant current in terms of single-nucleon form factors. The PFSA is shown to provide an accurate description of data up to momentum transfers of 0.5 GeV2{\rm GeV}^2, but falls below the data at higher momentum transfers. Results are sensitive to the nucleon form factor parameterization chosen, particularly to the neutron electric form factor.Comment: RevTex, 31 pages, 1 table, 13 figure
    corecore