7,386 research outputs found
The DArk Matter Particle Explorer mission
The DArk Matter Particle Explorer (DAMPE), one of the four scientific space
science missions within the framework of the Strategic Pioneer Program on Space
Science of the Chinese Academy of Sciences, is a general purpose high energy
cosmic-ray and gamma-ray observatory, which was successfully launched on
December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE
scientific objectives include the study of galactic cosmic rays up to
TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the
search for dark matter signatures in their spectra. In this paper we illustrate
the layout of the DAMPE instrument, and discuss the results of beam tests and
calibrations performed on ground. Finally we present the expected performance
in space and give an overview of the mission key scientific goals.Comment: 45 pages, including 29 figures and 6 tables. Published in Astropart.
Phy
Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons
High energy cosmic ray electrons plus positrons (CREs), which lose energy
quickly during their propagation, provide an ideal probe of Galactic
high-energy processes and may enable the observation of phenomena such as
dark-matter particle annihilation or decay. The CRE spectrum has been directly
measured up to TeV in previous balloon- or space-borne experiments,
and indirectly up to TeV by ground-based Cherenkov -ray
telescope arrays. Evidence for a spectral break in the TeV energy range has
been provided by indirect measurements of H.E.S.S., although the results were
qualified by sizeable systematic uncertainties. Here we report a direct
measurement of CREs in the energy range by the
DArk Matter Particle Explorer (DAMPE) with unprecedentedly high energy
resolution and low background. The majority of the spectrum can be properly
fitted by a smoothly broken power-law model rather than a single power-law
model. The direct detection of a spectral break at TeV confirms the
evidence found by H.E.S.S., clarifies the behavior of the CRE spectrum at
energies above 1 TeV and sheds light on the physical origin of the sub-TeV
CREs.Comment: 18 pages, 6 figures, Nature in press, doi:10.1038/nature2447
Observation and study of the decay
We report the observation and study of the decay
using events
collected with the BESIII detector. Its branching fraction, including all
possible intermediate states, is measured to be
. We also report evidence for a structure,
denoted as , in the mass spectrum in the GeV/
region. Using two decay modes of the meson ( and
), a simultaneous fit to the mass spectra is
performed. Assuming the quantum numbers of the to be , its
significance is found to be 4.4, with a mass and width of MeV/ and MeV, respectively, and a
product branching fraction
. Alternatively, assuming , the
significance is 3.8, with a mass and width of MeV/ and MeV, respectively, and a product
branching fraction
. The angular distribution of
is studied and the two assumptions of the
cannot be clearly distinguished due to the limited statistics. In all
measurements the first uncertainties are statistical and the second systematic.Comment: 10 pages, 6 figures and 4 table
Observation of and confirmation of its large branching fraction
The baryonic decay is observed, and the
corresponding branching fraction is measured to be
, where the first uncertainty is statistical
and second systematic. The data sample used in this analysis was collected with
the BESIII detector operating at the BEPCII double-ring collider with
a center-of-mass energy of 4.178~GeV and an integrated luminosity of
3.19~fb. The result confirms the previous measurement by the CLEO
Collaboration and is of greatly improved precision, which may deepen our
understanding of the dynamical enhancement of the W-annihilation topology in
the charmed meson decays
Measurement of proton electromagnetic form factors in in the energy region 2.00-3.08 GeV
The process of is studied at 22 center-of-mass
energy points () from 2.00 to 3.08 GeV, exploiting 688.5~pb of
data collected with the BESIII detector operating at the BEPCII collider. The
Born cross section~() of is
measured with the energy-scan technique and it is found to be consistent with
previously published data, but with much improved accuracy. In addition, the
electromagnetic form-factor ratio () and the value of the
effective (), electric () and magnetic () form
factors are measured by studying the helicity angle of the proton at 16
center-of-mass energy points. and are determined with
high accuracy, providing uncertainties comparable to data in the space-like
region, and is measured for the first time. We reach unprecedented
accuracy, and precision results in the time-like region provide information to
improve our understanding of the proton inner structure and to test theoretical
models which depend on non-perturbative Quantum Chromodynamics
Observation of in
Using a sample of events recorded with
the BESIII detector at the symmetric electron positron collider BEPCII, we
report the observation of the decay of the charmonium state
into a pair of mesons in the process
. The branching fraction is measured for the first
time to be , where the first uncertainty is
statistical, the second systematic and the third is from the uncertainty of
. The mass and width of the are
determined as MeV/ and
MeV.Comment: 13 pages, 6 figure
A Unified Approach to the Classical Statistical Analysis of Small Signals
We give a classical confidence belt construction which unifies the treatment
of upper confidence limits for null results and two-sided confidence intervals
for non-null results. The unified treatment solves a problem (apparently not
previously recognized) that the choice of upper limit or two-sided intervals
leads to intervals which are not confidence intervals if the choice is based on
the data. We apply the construction to two related problems which have recently
been a battle-ground between classical and Bayesian statistics: Poisson
processes with background, and Gaussian errors with a bounded physical region.
In contrast with the usual classical construction for upper limits, our
construction avoids unphysical confidence intervals. In contrast with some
popular Bayesian intervals, our intervals eliminate conservatism (frequentist
coverage greater than the stated confidence) in the Gaussian case and reduce it
to a level dictated by discreteness in the Poisson case. We generalize the
method in order to apply it to analysis of experiments searching for neutrino
oscillations. We show that this technique both gives correct coverage and is
powerful, while other classical techniques that have been used by neutrino
oscillation search experiments fail one or both of these criteria.Comment: 40 pages, 15 figures. Changes 15-Dec-99 to agree more closely with
published version. A few small changes, plus the two substantive changes we
made in proof back in 1998: 1) The definition of "sensitivity" in Sec. V(C).
It was inconsistent with our actual definition in Sec. VI. 2) "Note added in
proof" at end of the Conclusio
Observation of an anomalous line shape of the mass spectrum near the mass threshold in
Using events collected by the BESIII experiment
in 2012, we study the
process and observe a significant abrupt change in the slope of the
invariant mass distribution at the
proton-antiproton () mass threshold. We use two models to
characterize the line shape around
: one which explicitly incorporates the opening of a
decay threshold in the mass spectrum (Flatt\'{e} formula), and another which is
the coherent sum of two resonant amplitudes. Both fits show almost equally good
agreement with data, and suggest the existence of either a broad state around
with strong couplings to final states or a
narrow state just below the mass threshold. Although we cannot
distinguish between the fits, either one supports the existence of a
molecule-like state or bound state with greater than significance
Study of and and
We study the decays of and to the final states
and based on a single
baryon tag method using data samples of
and events collected with
the BESIII detector at the BEPCII collider. The decays to
are observed for the first time. The
measured branching fractions of and
are in good agreement with, and much
more precise, than the previously published results. The angular parameters for
these decays are also measured for the first time. The measured angular decay
parameter for , , is found to be negative, different to the other
decay processes in this measurement. In addition, the "12\% rule" and isospin
symmetry in the and and
systems are tested.Comment: 11 pages, 7 figures. This version is consistent with paper published
in Phys.Lett. B770 (2017) 217-22
Improved measurement of the absolute branching fraction of
By analyzing 2.93 fb of data collected at GeV with the
BESIII detector, we measure the absolute branching fraction , which is consistent with previous measurements within
uncertainties but with significantly improved precision. Combining the Particle
Data Group values of , , and the lifetimes of the and
mesons with the value of measured in this work, we determine the following ratios of
partial widths: and .Comment: 9 pages; 8 figure
- …