119 research outputs found

    The nestin-expressing and non-expressing neurons in rat basal forebrain display different electrophysiological properties and project to hippocampus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nestin-immunoreactive (nestin-ir) neurons have been identified in the medial septal/diagonal band complex (MS/DBB) of adult rat and human, but the significance of nestin expression in functional neurons is not clear. This study investigated electrophysiological properties and neurochemical phenotypes of nestin-expressing (nestin+) neurons using whole-cell recording combined with single-cell RT-PCR to explore the significance of nestin expression in functional MS/DBB neurons. The retrograde labelling and immunofluorescence were used to investigate the nestin+ neuron related circuit in the septo-hippocampal pathway.</p> <p>Results</p> <p>The results of single-cell RT-PCR showed that 87.5% (35/40) of nestin+ cells expressed choline acetyltransferase mRNA (ChAT+), only 44.3% (35/79) of ChAT+ cells expressed nestin mRNA. Furthermore, none of the nestin+ cells expressed glutamic acid decarboxylases 67 (GAD<sub>67</sub>) or vesicular glutamate transporters (VGLUT) mRNA. All of the recorded nestin+ cells were excitable and demonstrated slow-firing properties, which were distinctive from those of GAD<sub>67 </sub>or VGLUT mRNA-positive neurons. These results show that the MS/DBB cholinergic neurons could be divided into nestin-expressing cholinergic neurons (NEChs) and nestin non-expressing cholinergic neurons (NNChs). Interestingly, NEChs had higher excitability and received stronger spontaneous excitatory synaptic inputs than NNChs. Retrograde labelling combined with choline acetyltransferase and nestin immunofluorescence showed that both of the NEChs and NNChs projected to hippocampus.</p> <p>Conclusions</p> <p>These results suggest that there are two parallel cholinergic septo-hippocampal pathways that may have different functions. The significance of nestin expressing in functional neurons has been discussed.</p

    Efficient Temporal Butterfly Counting and Enumeration on Temporal Bipartite Graphs

    Full text link
    Bipartite graphs model relationships between two different sets of entities, like actor-movie, user-item, and author-paper. The butterfly, a 4-vertices 4-edges 2×22\times 2 bi-clique, is the simplest cohesive motif in a bipartite graph and is the fundamental component of higher-order substructures. Counting and enumerating the butterflies offer significant benefits across various applications, including fraud detection, graph embedding, and community search. While the corresponding motif, the triangle, in the unipartite graphs has been widely studied in both static and temporal settings, the extension of butterfly to temporal bipartite graphs remains unexplored. In this paper, we investigate the temporal butterfly counting and enumeration problem: count and enumerate the butterflies whose edges establish following a certain order within a given duration. Towards efficient computation, we devise a non-trivial baseline rooted in the state-of-the-art butterfly counting algorithm on static graphs, further, explore the intrinsic property of the temporal butterfly, and develop a new optimization framework with a compact data structure and effective priority strategy. The time complexity is proved to be significantly reduced without compromising on space efficiency. In addition, we generalize our algorithms to practical streaming settings and multi-core computing architectures. Our extensive experiments on 11 large-scale real-world datasets demonstrate the efficiency and scalability of our solutions

    Identification of Causal Relationship between Amyloid-beta Accumulation and Alzheimer's Disease Progression via Counterfactual Inference

    Full text link
    Alzheimer's disease (AD) is a neurodegenerative disorder that is beginning with amyloidosis, followed by neuronal loss and deterioration in structure, function, and cognition. The accumulation of amyloid-beta in the brain, measured through 18F-florbetapir (AV45) positron emission tomography (PET) imaging, has been widely used for early diagnosis of AD. However, the relationship between amyloid-beta accumulation and AD pathophysiology remains unclear, and causal inference approaches are needed to uncover how amyloid-beta levels can impact AD development. In this paper, we propose a graph varying coefficient neural network (GVCNet) for estimating the individual treatment effect with continuous treatment levels using a graph convolutional neural network. We highlight the potential of causal inference approaches, including GVCNet, for measuring the regional causal connections between amyloid-beta accumulation and AD pathophysiology, which may serve as a robust tool for early diagnosis and tailored care

    The effect of Bafa Wubu of Tai Chi on college students’ anxiety and depression: A randomized, controlled pilot study

    Get PDF
    Objective: This pilot study aimed to explore the mechanism of the effects of Bafa Wubu of Tai Chi (BWTC) on anxiety and depression in college students using resting-state functional magnetic resonance imaging (RS-fMRI).Methods: Eighteen college students (5 males and 13 females) with anxiety and depression met the study criteria and were randomly divided into an experimental group (aged 24.20 ± 4.07 years) and a control group (aged 22.50 ± 5.95). The experimental group received an eight-week BWTC intervention five times/week for 60 min/session. The control group maintained normal daily life without any exercise intervention. These students were assessed using RS-fMRI scans, the self-rating anxiety scale (SAS), and the self-rating depression scale (SDS). Spearman correlation analysis was used, and statistical significance was defined as a two-sided p-value of &lt;0.05.Results: After the intervention, the SAS and SDS scores of the BWTC group significantly reduced (p = 0.002; p = 0.001). Compared with the control group, the fALFF values of the right middle frontal gyrus, orbital part (Frontal_Mid_Orb_R) (p = 0.043), right inferior occipital gyrus (Occipital_Inf_R) (p = 0.003), and right middle temporal gyrus of the temporal pole (Temporal_Pole_Mid_R) (p = 0.003) in the BWTC group increased significantly; the fALFF values of the left middle frontal gyrus (Frontal_Mid_L) (p = 0.001) and right supplementary motor area (Supp_Motor_Area_R) (p = 0.010) in BWTC group decreased significantly. The fALFF values of Frontal_Mid_Orb_R were significantly positively correlated with the SDS score (r = 0.852, p = 0.015) and the fALFF values of Frontal_Mid_L were significantly negatively correlated with the SAS score (r = −0.797, p = 0.032).Conclusion: In this pilot study with college students, BWTC alleviated anxiety and depression, potentially through modulating activity in the Frontal_Mid_L and Frontal_Mid_Orb_R, respectively

    Understanding LLMs: A Comprehensive Overview from Training to Inference

    Full text link
    The introduction of ChatGPT has led to a significant increase in the utilization of Large Language Models (LLMs) for addressing downstream tasks. There's an increasing focus on cost-efficient training and deployment within this context. Low-cost training and deployment of LLMs represent the future development trend. This paper reviews the evolution of large language model training techniques and inference deployment technologies aligned with this emerging trend. The discussion on training includes various aspects, including data preprocessing, training architecture, pre-training tasks, parallel training, and relevant content related to model fine-tuning. On the inference side, the paper covers topics such as model compression, parallel computation, memory scheduling, and structural optimization. It also explores LLMs' utilization and provides insights into their future development.Comment: 30 pages,6 figure

    Outcomes Impacting Quality of Life in Advanced Parkinson's Disease Patients Treated with Levodopa-Carbidopa Intestinal Gel

    Get PDF
    BACKGROUND: It is believed that motor symptoms, including dyskinesia, and non-motor symptoms impact health-related quality of life (HRQoL) in patients with Parkinson’s disease (PD), and that improvements in these metrics are correlated. OBJECTIVE: Investigate the relationship between HRQoL and measures of PD severity and treatment efficacy, including motor and non-motor symptoms. METHODS: This was a planned investigation of an international, prospective, single-arm, post-marketing observational study of the long-term effectiveness of levodopa-carbidopa intestinal gel (LCIG) in patients with advanced PD. Pearson correlation coefficients (PCC) were calculated for baseline and change from baseline at 12 months between HRQoL and motor and non-motor symptoms. RESULTS: A total of 195 patients were included. At baseline, HRQoL was moderately positively correlated with Activities of Daily Living (UPDRS II, PCC = 0.44), non-motor symptoms (0.48), and measures of sleep (0.50 and 0.40); all p < 0.001. After 12 months of treatment with LCIG, improvements in HRQoL were moderately positively correlated with improvement from baseline in non-motor symptoms (PCC = 0.42), sleep (0.54), and daytime sleepiness (0.40; all p < 0.001), and weakly correlated with improvement in dyskinesia signs and symptoms (PCC = 0.23; p = 0.011). Improvement in HRQoL was not correlated with improvements in OFF time or dyskinesia time. CONCLUSION: Both at baseline and for change from baseline at 12 months, HRQoL was correlated with baseline and change from baseline in dyskinesia, Activities of Daily Living, and non-motor symptoms, including sleep; but not with baseline or change in OFF time
    • 

    corecore