7,340 research outputs found

    ceFinder: Machine Learning Based Prediction of Novel Competing Endogenous RNAs

    Get PDF
    From the Washington University Senior Honors Thesis Abstracts (WUSHTA), Spring 2018. Published by the Office of Undergraduate Research. Joy Zalis Kiefer, Director of Undergraduate Research and Associate Dean in the College of Arts & Sciences; Lindsey Paunovich, Editor; Helen Human, Programs Manager and Assistant Dean in the College of Arts and Sciences Mentor: Ha X. Dang and Christopher A. Mahe

    Defects controlled wrinkling and topological design in graphene

    Get PDF
    Because of its atomic scale thickness, the deformation energy in a free standing graphene sheet can be easily released through out-of-plane wrinkles which, if controllable, may be used to tune the electrical and mechanical properties of graphene. Here we adopt a generalized von Karman equation for a flexible solid membrane to describe graphene wrinkling induced by a prescribed distribution of topological defects such as disclinations (heptagons or pentagons) and dislocations (heptagon–pentagon dipoles). In this framework, a given distribution of topological defects in a graphene sheet is represented as an eigenstrain field which is determined from a Poisson equation and can be conveniently implemented in finite element method simulations. Comparison with atomistic simulations indicates that the proposed model, with only three parameters (i.e., bond length, stretching modulus, and bending stiffness), is capable of accurately predicting the atomic scale wrinkles near disclination/dislocation cores while also capturing the large-scale graphene configurations under specific defect distributions such as those leading to a sinusoidal surface ruga or a catenoid funnel

    Methods of constructing superposition measures

    Full text link
    The resource theory of quantum superposition is an extension of the quantum coherent theory, in which linear independence relaxes the requirement of orthogonality. It can be used to quantify the nonclassical in superposition of finite number of optical coherent states. Based on convex roof extended, state transformation and weight, we give three methods of constructing superposition measures of quantum states, respectively. We also generalize the superposition resource theory from two perspectives.Comment: 13 page

    Phase-locked scroll waves defy turbulence induced by negative filament tension

    Get PDF
    Scroll waves in a three-dimensional media may develop into turbulence due to negative tension of the filament. Such negative tension-induced instability of scrollwaves has been observed in the Belousov-Zhabotinsky reaction systems. Here we propose a method to restabilize scroll wave turbulence caused by negative tension in three-dimensional chemical excitable media using a circularly polarized (rotating) external field. The stabilization mechanism is analyzed in terms of phase-locking caused by the external field, which makes the effective filament tension positive. The phase-locked scrollwaves that have positive tension and higher frequency defy the turbulence and finally restore order. A linear theory for the change of filament tension caused by a generic rotating external field is presented and its predictions closely agree with numerical simulations

    Analysis of an SIR Epidemic Model with Pulse Vaccination and Distributed Time Delay

    Get PDF
    Pulse vaccination, the repeated application of vaccine over a defined age range, is gaining prominence as an effective strategy for the elimination of infectious diseases. An SIR epidemic model with pulse vaccination and distributed time delay is proposed in this paper. Using the discrete dynamical system determined by the stroboscopic map, we obtain the exact infection-free periodic solution of the impulsive epidemic system and prove that the infection-free periodic solution is globally attractive if the vaccination rate is larger enough. Moreover, we show that the disease is uniformly persistent if the vaccination rate is less than some critical value. The permanence of the model is investigated analytically. Our results indicate that a large pulse vaccination rate is sufficient for the eradication of the disease

    Fuzzy Weight Cluster-Based Routing Algorithm for Wireless Sensor Networks

    Get PDF
    Cluster-based protocol is a kind of important routing in wireless sensor networks. However, due to the uneven distribution of cluster heads in classical clustering algorithm, some nodes may run out of energy too early, which is not suitable for large-scale wireless sensor networks. In this paper, a distributed clustering algorithm based on fuzzy weighted attributes is put forward to ensure both energy efficiency and extensibility. On the premise of a comprehensive consideration of all attributes, the corresponding weight of each parameter is assigned by using the direct method of fuzzy engineering theory. Then, each node works out property value. These property values will be mapped to the time axis and be triggered by a timer to broadcast cluster headers. At the same time, the radio coverage method is adopted, in order to avoid collisions and to ensure the symmetrical distribution of cluster heads. The aggregated data are forwarded to the sink node in the form of multihop. The simulation results demonstrate that clustering algorithm based on fuzzy weighted attributes has a longer life expectancy and better extensibility than LEACH-like algorithms
    corecore