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Chirality is one of the most fundamental properties of many physical, chemical, and biological sys-
tems. However, the mechanisms underlying the onset and control of chiral symmetry are largely
understudied. We investigate possibility of chirality control in a chemical excitable system (the
Belousov-Zhabotinsky reaction) by application of a chiral (rotating) electric field using the Oreg-
onator model. We find that unlike previous findings, we can achieve the chirality control not only in
the field rotation direction, but also opposite to it, depending on the field rotation frequency. To un-
ravel the mechanism, we further develop a comprehensive theory of frequency synchronization based
on the response function approach. We find that this problem can be described by the Adler equation
and show phase-locking phenomena, known as the Arnold tongue. Our theoretical predictions are in
good quantitative agreement with the numerical simulations and provide a solid basis for chirality
control in excitable media. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4874645]

I. INTRODUCTION

Chirality is a significant property of asymmetry that has
been found in several branches of science with notorious ex-
amples in fields ranging from particle physics to biological
systems.1 In the context of pattern formation, a typical self-
organized wave pattern bearing chirality is a spiral wave, as it
has topological charge (either −1 or +1) that is related to the
sense of rotation, e.g., clockwise (CW) or counterclockwise
(CCW). Spiral waves have been found in a wide variety of
chemical, physical, and biological systems. For instance, they
occur in the classical Belousov-Zhabotinsky (BZ) reaction,2–4

on platinum surfaces during the process of catalytic oxidation
of carbon monoxide,5 in the liquid crystal,6 during aggrega-
tion of Dictyostelium discoideum amoebae,7 in the chicken
retina,8 and in cardiac tissue where they are thought to lead to
life-threatening cardiac arrhythmias.9

To date, much attention has been paid to spiral dy-
namics as they respond to various external fields such as
dc and ac electric fields,10–15 periodic forcing,16–20 mechan-
ical deformation,21–23 and heterogeneity.24–29 As reaction-
diffusion (RD) systems exhibit mirror symmetry, CCW and
CW spiral waves are physically identical and the response of
spiral waves with opposite chirality to achiral fields is identi-
cal up to mirror symmetry. For example, the sense of drift per-
pendicular to a constant electric field will change for a spiral
wave of opposite chirality.10–12 The chiral property of spiral
waves causes some interesting behaviors, in particular as they
respond to a chiral field.30–33 However this issue to our best
knowledge remains to be comparatively less addressed over
last decades. Recently, a circularly polarized electric field
(CPEF) that possesses chirality was theoretically proposed34

a)Electronic mail: bwli@hznu.edu.cn

and was implemented in the BZ experiment,35 which allows
us to study the response of spiral waves to a chiral electric
field in RD systems. Indeed, it has been shown that the CPEF
has some pronounce effects on spiral waves36–38 that were not
observed in RD systems subject to achiral fields such as a dc
or ac electric field.

Possibly, one of the most interesting results caused by
chiral fields or forces is chiral symmetry breaking, an ubiq-
uitously observed scenario in nature.30–32, 39–43 Over the past
decades, chiral symmetry breaking induced by such chiral
fields has received considerable interests from many scien-
tific disciplines.30–32, 41–43 Different from spontaneous chi-
ral symmetry breaking where the chiral selection is unpre-
dicted, it was demonstrated that chiral fields not only cause
the breaking of chirality but also could select a desired
chirality,30–32, 41–43 which is closely related with that of the ap-
plied field. As an example, the chirality of a supramolecular
structure can be selected by the vortex motion and depends on
the chirality of the vortex.41 In Rayleigh-Bénard convection,
chiral symmetry breaking in spiral-defect populations was ob-
served when the system rotated along the vertical axis, and the
chirality of the dominant spirals relies on the rotation sense of
the system.32 By subjecting a RD system to the CPEF,38 we
recently found that the zero-rotation chiral symmetry between
CW and CCW spiral defects breaks and that ordered spiral
waves with preferred chirality arise from the spiral turbulence
state. Here too, the preferred chirality was only determined by
the chirality of the CPEF.38

On the other hand, due to the presence of chiral terms,
the frequency response of spiral waves with opposite chirality
is different. For example, in the complex Ginzburg-Landau
equation (CGLE) with a broken chiral symmetry breaking
term, Nam et al.33 showed that this chiral term would cause
a shift in the frequency of spiral waves and the sign of this

0021-9606/2014/140(18)/184901/9/$30.00 © 2014 AIP Publishing LLC140, 184901-1
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shift depends on the chirality of the spiral waves. In our re-
cent work,38 such chirality-dependent frequency response was
also observed in RD systems coupled to the CPEF. However, a
quantitative description of the chirality-dependent frequency
response to the CPEF in such RD systems is still lacking.

In this work, we study the competition of a spiral pair
in the Oregonator model for the BZ medium coupled to a
CPEF and find that the chirality of the dominant spiral pattern
can be changed by tuning the frequency, without altering the
CPEF chirality. This finding differs from the previous results
where a close relationship between the chirality of the applied
field and that of the selected entity exists. In order to explain
this result, we develop a theory for chirality-dependent fre-
quency response using the response functions approach. The
theory predicts phase locking phenomena described by Adler
equation. These theoretical predictions are in good quantita-
tive agreement with the numerical results.

II. MODEL AND METHODS

A. Reaction-diffusion model

Experimentally, electric fields are commonly imple-
mented in the BZ chemical reaction to study their effects on
spiral waves.10, 11 Most observations can be well reproduced
numerically by a Oregonator model that has been modified
to take into account the existence of an electric field. Al-
though the Oregonator model had originally three variables,
it can be reduced under some situations (e.g., existence of
large time scales between chemical species) to a two-variable
model.14, 15 Previous studies suggested that in the presence
of an electric field, computation results based on the two-
component version are coincident with those on the three-
variable version,14, 15 but with significant savings in compu-
tational time. Due to these considerations, in this work we
use the following two-component dimensionless Oregonator
model for the BZ medium:15, 44

∂u

∂t
= ε−1

[
u − u2 − (f v + ϕ)

u − q

u + q

]
+ Mu

�E · �∇u+Du�u,

(1)

∂v

∂t
= u − v + Mv

�E · �∇v + Dv�v, (2)

where fast variable u and slow variable v, respectively, rep-
resent the concentrations of the autocatalytic species HBrO2

and the catalyst of the reaction. The small dimensionless pa-
rameter ε represents the ratio of time scales of the dynamics
of the fast and slow variables; f is the stoichiometric param-
eter and the parameter q is a ratio of chemical reaction rates.
The parameter ϕ controls the local excitability of the system.
Du and Dv stand for the diffusion coefficients of HBrO2 and
the catalyst. In what follows, we only consider the diffusion
of u, as we assume that the reaction takes place in a gel which
immobilizes the catalyst, i.e., Dv = 0. The effects of an exter-
nal electric field are considered through the terms Mu

�E · �∇u

and Mv
�E · �∇v where Mu and Mv denotes the mobility of the

ions under an electric field. We furthermore assume Mu and
Mv to be proportional to Du and Dv , implying Mv = 0. Thus,

the applied electric field only affects the fast variable u in our
case.

The driving force for chiral selection is implemented as
the CPEF �E = E cos(ωf t)i + E cos(ωf t + �γ )j, where i, j
are orthogonal basis vectors in the plane. Such CPEF can be
generated experimentally by applying two ac electric fields
perpendicular to each other and tuning the phase difference
�γ ; �γ = 3π /2 (�γ = π /2) corresponds to a CCW (CW)
CPEF. For more details on the experimental setup, please refer
to Ref. 35.

B. Numerical methods

We numerically integrated Eqs. (1) and (2) using the ex-
plicit Euler method with a spatial step �x = �y = 0.20 s.u.
and a time step �t = 0.002 t.u. Through our work, we fix q
= 0.002, ε = 0.1, f = 2.0, and ϕ = 0.01, as in Ref. 44, such
that the system is in an excitable regime that supports a rigidly
rotating spiral wave. The spiral tip is defined by the intersec-
tion point of the isolines of u = 0.20 and v = 0.05; the rota-
tion frequency of a spiral wave is calculated via ωs = 2π /T
where T is the arithmetic mean of the time intervals between
two successive maximal values of u in a given point of the
medium. In the absence of an electric field, the period of the
spiral wave was measured to be T0 = 7.382, corresponding to
a natural rotation frequency ω0 = 0.851.

III. NUMERICAL RESULTS

A. Chiral selection of a spiral pair

In this section we investigate the behavior of a spiral pair
under a CPEF. To this end, we first initiate a pair of two
counter-rotating spiral waves as shown in Fig. 1(a); such pair
is invariant under mirror symmetry. We note that dynamics
of a spiral pair has been studied by many authors.45–49 For
instance, in the framework of CGLE, a spiral pair undergoes
a symmetry breaking instability. Such kind of breaking has
been further reported experimentally in the BZ system46, 50

and numerically in the three-component RD systems.48, 49 In
our case such kind of instability does not occur without the
electric terms in Eqs. (1) and (2). Figure 1(b) shows a pro-
cess of the chiral symmetry instability of the spiral pair after
switching on the CCW CPEF with E = 0.05 and ωf = 0.87,
slightly larger than the rotation frequency ω0 of a free spiral.
In less than 36 rotations, chiral symmetry is clearly lost [refer
to t = 270 t.u. in Fig. 1(b)], and then the CCW spiral with the
same chirality as the CPEF starts to dominate (refer to t = 470
t.u.). Later, the CW spiral is pushed to the boundary and only
the CCW spiral wave survives in the system (t = 1000 t.u.).
Note that in this case the external field selects a spiral with the
same chirality as its own, which is consistent with the chiral
selection controlled by chiral fields in other systems.30–32, 41–43

However, the opposite chirality (CW) spiral wave can
also be selected without changing the chirality of the CPEF.
This scenario is illustrated in Fig. 1(c) where we keep the
same chirality for the CPEF as in Fig. 1(b), but lower the
forcing frequency ωf to 0.83 < ω0. In contrast to Fig. 1(b),
we observe that the CW spiral develops and the other one

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

78.21.61.156 On: Thu, 08 May 2014 17:39:00



184901-3 Li et al. J. Chem. Phys. 140, 184901 (2014)

FIG. 1. Chiral symmetry breaking and selection of a spiral pair under a CCW
CPEF. (a) E = 0, a spiral pair stably rotates. (b) E = 0.05 and ωf = 0.87
> ω0, chiral symmetry breaking occurs, and chirality of the dominant spiral
is CCW, the same as that of the CPEF. (c) similar to (b), but with ωf = 0.83
< ω0, the dominant spiral is CW, opposite to that of the CPEF. Numbers
shown in each plot indicate the time. We show the v variable in each snapshot.
The system is composed of 1024 × 1024 grid points.

is reduced to a bare core. Thus, the spiral with the opposite
chirality to the CPEF is eventually selected. This scenario is
quite different from the previous studies on the chiral sym-
metry breaking caused by chiral fields, where reversal of the
chiral field chirality seems necessary if one needs to select the
opposite chiral entity.30–32, 41–43

B. Chiral selection of multi-spiral states

The present findings also differ from the spontaneous
symmetry breaking of spiral pairs found previously where
chiral selection of the dominant spiral is unpredictable which
is sensitive to the many factors such as the initial distance be-
tween the spiral core.45–50 However, the forced chiral symme-
try breaking caused by the CPEF presented in this work [both
in Figs. 1(b) and 1(c)] is quite robust and almost insensitive to
the initial orientation or inter-spiral distance. For example, the
chiral symmetry breaking observed above is not only limited
to a spiral pair but it can also occur in a state with multiple
spiral waves, as illustrated in Fig. 2. Similar to the interaction
of a spiral pair, we find CCW spiral waves would dominate
CW spiral waves when we apply CCW CPEF with ωf = 0.87
> ω0 and CW spirals finally dominate CCW ones as we
change the forcing frequency to ωf = 0.83 < ω0.

C. Phase diagram for chiral selection

A systematic study shows that such chiral symmetry
breaking and pattern selection can be achieved in a broad
parameter range. We summarize the results in the phase di-
agram of E versus ωf in Fig. 3. After a spiral pair is created

FIG. 2. Chiral selection in a multiple-spiral state caused by a CCW CPEF.
(a) E = 0.0, stable multiple-spiral state. (b) E = 0.05, ωf = 0.87, CCW spiral
waves dominate at t = 5000 t.u. (c) E = 0.05, ωf = 0.83, CW spiral waves
dominate CCW at t = 3000 t.u. The same system size and parameters as in
Fig. 1 were used.

(t = 40 t.u.), the CPEF is switched on and the evolution is fol-
lowed until the simulation was ended (t = te = 1040 t.u.).
Different final states are coded with different markers in
Fig. 3. First, when no obvious chiral breaking is noticed, open
triangles are drawn. This happened near resonance (ωf ≈ ω0)
and at the lower corners of the diagram where |ωf − ω0|/E
is large. Second, we drew shaded circles (squares) when a
single dominant CW (CCW) spiral pattern survived. As in
Figs. 1(a) and 1(b), these regions correspond to where ωf is
slightly smaller (bigger) than ω0. Third, between the fully
selective and non-selective regions of the phase diagram, a
border zone exists (colored triangles), where chiral symmetry
was broken at t = te, without achieving a selection of single-
chirality spiral waves.

D. Frequency response of spiral waves to a CPEF

The time-averaged spiral frequency ωs is measured (refer
to the section of the numerical method) and its dependence

0.75 0.8 0.85 0.9 0.95

0.01

0.03

0.05

0.07

0.09

ω
f

E

FIG. 3. Phase diagram of chiral selection controlled by the CCW CPEF.
Shaded circles and squares denote the CW and CCW dominant spiral waves,
respectively; shaded triangles mean that the CCW and CW spiral still co-
exist but chiral symmetry breaking can be observed. Open triangle denotes
the coexistence of the CCW and the CW spiral waves without obvious chi-
ral symmetry breaking at the end of the simulation time ttot = 1000 t.u. To
compute this diagram, we use the same system size as in Fig. 1.
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FIG. 4. Spiral frequency response to the CCW CPEF. (a)-(b) The frequency of a CCW spiral wave as a function of the forcing frequency ωf for E = 0.02 and
E = 0.05, respectively. (c)-(d) The frequency of a CW spiral as a function of ωf for E = 0.02 and E = 0.05, respectively. The red dashed lines represent ω0
= 0.851. In (a)-(b), the shaded region denotes the synchronized region and the blue dotted lines mean ωs = ωf. To calculate the frequency (period), we use the
system with 256 × 256 grid points.

on the forcing frequency ωf for two intensities E is plotted
in Figs. 4(a) and 4(b) for the CCW spiral and Figs. 4(c) and
4(d) for the CW one. From these plots, we find that there is a
chirality-dependent frequency response of spiral waves to the
CPEF. Specifically, the CCW spiral with the same chirality
as the CPEF, is able to keep the pace with the CPEF, which
is particularly obvious if the frequency mismatch between ωf

and ω0, denoted by �ω = ωf − ω0, is small. Once this hap-
pens, ωCCW

s would be altered to keep the same value as ωf

and frequency synchronization, also known as phase-locking,
is observed. The synchronization region (color shaded) is ex-
tended as we increase the strength of the CPEF [compared
Figs. 4(a) and 4(b)]. However, rotation frequency of the spiral
waves with opposite chirality to the CPEF, seems to be hardly
affected by the frequency and the intensity of the CPEF. The
rotation frequency of CW spirals stays close to ω0, as seen
from Figs. 4(c) and 4(d).

IV. MECHANISM FOR CHIRAL SELECTION
AND FREQUENCY SYNCHRONIZATION

A. Selection of spiral waves by frequency shift

The chirality-dependent frequency response to the CPEF
is the underlying cause for the chiral selection observed in
Figs. 1–3 as we explain below from the viewpoint of the
wave competition. When we apply a CCW CPEF with the
frequency that is quite close to but a little larger than ω0, i.e.,
ωf > ω0, from Fig. 4 we know the rotation frequency of the
CCW spiral with the same chirality as the CPEF would be
increased due to synchronization: i.e., ωCCW

s = ωf ; while for
the CW spiral, its frequency ωCW

s seems not changed and thus
ωCW ≈ ω0. This causes a frequency shift between CCW and
CW spiral waves when a spiral pair is affected by the CPEF.
Due to the competition rule that in excitable media the faster
one always wins the slower one, we find at the end the CCW
spiral dominates the CW one in Fig. 1(b). For example, the

faster source may push its wave tail closer to the other spiral’s
core, which is eventually directly exposed to the spiral wave
of the higher frequency. As a result the slower rotating wave
will drift, and may be annihilated at the medium boundary.
The scenario is also very similar if we apply the CPEF with
ωf < ω0, e.g., see Fig. 1(c). This competition also explains the
scenarios witnessed in Figs. 2 and 3.

When we apply ωf that is almost equal to ω0, we will
get ωCCW

s ≈ ωCW
s , and under this situation, a spiral pair will

still be stable as the case without the CPEF. If the frequency
shift between spiral waves caused by the CPEF is extremely
small, we need a much longer time to observe chiral symme-
try breaking, which explains the narrow zone at ωf ≈ ω0 in
Fig. 3 where chiral symmetry was intact at the end of simula-
tion time.

B. Theoretical description of frequency
synchronization using response function theory

In order to look into the nature and origin of the chirality-
dependent frequency response, especially frequency synchro-
nization, in further detail, we below derive a phase equation
based on the singular perturbation theory51–59 around an un-
perturbed spiral wave, employing critical adjoint eigenfunc-
tions which are also known as response functions.51–54, 58, 59

From this phase equation, we analytically find the conditions
under which a spiral wave will synchronize with the CPEF, as
we now proceed to show.

We start our derivation of the phase-locking equation by
rewriting Eqs. (1) and (2) in a matrix form,

∂tu = D̂�u + F(u) + h, (3)

where in our case u = (u, v)T , F = (ε−1(u − u2 − (f v

+ ϕ)(u − q)/(u + q)), u − v)T , and h = �E · M̂ �∇u is as-
sumed to be a small perturbation. Furthermore, D̂ and M̂ are
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FIG. 5. A scheme of defining references and angles for our derivation. xoy is
fixed in the lab reference, while x′o′y′ co-rotates with the spiral at the instan-
taneous frequency ω. o′x′ is chosen as parallel with the vector �G = �∇u/‖ �∇u‖
at the spiral tip. For then, 
 = φ(t) − θ (t) where θ (t) = θ0 + ωft and
φ(t) = φ0 + ω0t + φ̃(t) denote the rotation phases of the electric field and
the spiral wave. The shaded region denotes the shape of the spiral wave.

constant diffusion and mobility matrices, given by

D̂ =
(

Du 0
0 Dv

)
, M̂ =

(
Mu 0
0 Mv

)
. (4)

Next, we introduce two frames of reference as shown in
Fig. 5. The laboratory frame is denoted by (x, y, t), while
the spiral frame that co-rotates with the spiral wave at the in-
stantaneous frequency ω is denoted by (x′, y′, t′). To measure
the spiral’s rotation phase, we introduce the reference vector
�G = �∇u/‖ �∇u‖ at the spiral tip. The phase φ is then the ori-
ented angle between the x-direction and �G. We will choose
the co-rotating frame such that �G is aligned with the positive
x-axis at all times.

Furthermore, we denote by σ the chirality of the spiral
wave: σ = +1 for CCW and σ = −1 for CW rotation. (As
before, we assume the rotation of the CPEF is always CCW,
i.e., ωf > 0.)

According to the response function theory used in
Refs. 51–54, 58, and 59, a small perturbation h acts on a ro-
bust spiral pattern by causing a translational and rotational
shift. In particular, the phase angle will evolve as φ(t) = φ0

+ σω0t + φ̃(t) with phase correction φ̃(t). Hence, the instan-
taneous rotation frequency changes to φ̇(t) = σω0 + ω̃(t),
where ω̃(t) = ˙̃φ(t) is a convolution of h with the so-called
rotational response function,59 i.e.,

ω̃ =
∫
R2

W(0)(x ′, y ′)H h(x ′, y ′, t ′)dx ′dy ′. (5)

Here (.)H denotes Hermitian conjugation of a column vector
of state-variables and W(0) is the rotational response function.
Mathematically, it is the adjoint zero mode to the linearized

operator associated to Eq. (3).51, 55, 59 We use the normaliza-
tion as in Ref. 51 such that∫

R2
W(0)(X, Y )H ∂�u0(X, Y )dXdY = −1, (6)

to avoid the appearance of a minus sign in Eq. (5). Here, u0(X,
Y) is the time-independent unperturbed spiral wave solution to
Eq. (3) in the co-rotating frame with polar coordinate �. For
a given RD model with differentiable reaction kinetics, W(0)

can be numerically computed, see, e.g., Refs. 51 and 57. In the
present case, the perturbation is the CPEF, i.e., h = �E · M̂ �∇u,
which can be expressed in the spiral frame (x′o′y′) as

h = Ex ′
M̂∂x ′u + Ey ′

M̂∂y ′u = Ex ′
M̂∂x ′u0

+Ey ′
P̂∂y ′u0 + O(E2). (7)

Here Ex ′
(Ey ′

) is the component of the electric field �E along
x′ (y′) and a first approximation is made, i.e., u(x ′, y ′, t ′)
= u0(x ′, y ′) + ũ(x ′, y ′, t ′), where ũ is of the same order as
E. Substituting Eq. (7) to Eq. (5), we have

ω̃ = ˙̃φ = Ex ′
M0

x ′ + Ey ′
M0

y ′ + O(E2), (8)

where M0
x ′ and M0

y ′ are time-independent constants given by
the overlap integrals

M0
x ′ =

∫
R2

W(0)(x ′, y ′)H M̂∂x ′u0(x ′, y ′)dx ′dy ′,

(9)

M0
y ′ =

∫
R2

W(0)(x ′, y ′)H M̂∂y ′u0(x ′, y ′)dx ′dy ′.

Let us now denote the experimentally accessible angle of
�G relative to the electric field as 
(t) = φ(t) − θ (t), which
yields Ex ′ = E cos 
 and Ey ′ = −E sin 
. If we further de-
fine M0

x ′ = A cos α and M0
y ′ = A sin α such that

A =
√(

M0
x ′
)2 + (

M0
y ′
)2

, tan α = M0
y ′/M

0
x ′ , (10)

Eq. (8) can be written as

ω̃ = ˙̃φ = EA cos(
 + α) + O(E2). (11)

Recalling that 
(t) = φ(t) − θ (t), we note that 
̇ = (σω0 −
ωf ) + ˙̃φ, which finally produces the phase equation, up to lin-
ear order in the field intensity E:


̇(t) = −�ω + EA cos(
 + α), (12)

where �ω = ωf − σω0.
Interestingly, we note that Eq. (12) has the same form as

with phase synchronization of oscillators driven by a small pe-
riodic force60, 61 where it is often called the Adler equation.62

This equation is served to study phase-locking phenomena in
diverse natural or engineered systems.60, 62 Furthermore, the
coefficients A and α can be found from numerical computa-
tion, as we will proceed to show.

Let us first, however, discuss how frequency synchro-
nization follows from Eq. (12). Since |cos (x)| ≤ 1 for all
real-valued arguments x, in the case of the same rotation be-
tween spiral waves and the CPEF the one-dimensional dy-
namical system Eq. (12) possesses two equilibrium points

± = −α ± arccos

(
�ω
EA

)
whenever |ω0 − ωf| < EA. From
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FIG. 6. (a) Plot of 
̇ versus (
 + α). The solid black dot represents the
stable solution (fixed point) while the open circle denotes the unstable one.
Arrows denote the flow direction. (b) Dependence of numerically measured

s on ωf for three different intensities of the electric field.

Fig. 6(a), it is observed that only the equilibrium point which
has 0 < 
 + α < π is stable; we will denote it as


s = −α + arccos

(
�ω

EA

)
. (13)

Hence, a unique phase-locked spiral state exists as long as

E > E∗ =
∣∣ω0 − ωf

∣∣
A

. (14)

Such phase-locking region is known as an Arnold tongue; for
the current system and order of calculation in E, it has a trian-
gular shape.

If the spiral wave and the CPEF rotate in an opposite way,
the phase equation can be written explicitly as 
̇ = −(ω0

+ ωf ) + EA cos(
 + α). Since we work in the regime of
EA 
 (ω0 + ωf), we expect no synchronization in this case,
which is consistent with the observation in Figs. 4(c) and 4(d).

C. Quantitative results using response functions

Finally, we will quantitatively compare the theory and
numerical experiments for the value of the phase-locked an-
gle and the width of the Arnold tongue. These quantities only
depend on the parameters A and α, which are fully determined
by the parameters of the RD system without the electric field.
They can be directly calculated with response functions by
using the freely available software DXSPIRAL,51–53 to which
we added reaction kinetics for the Oregonator model. With
the parameters used in our paper and a polar grid of radius
R = 10 with Nr = 240, Nθ = 256, we find A = 1.505. In
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FIG. 7. (a) 
 changes as time for E = 0.05 and ωf = 0.87 showing the
phase locking for large t. Both the spiral and the CPEF are CCW. (b) Same as
(a) but for the opposite chirality, e.g., CW spiral and CCW CPEF.

the frame where x′ is aligned with �G, we find M0
x ′ = 0.8955,

M0
y ′ = −1.2094, such that α = −0.9334 = −53.5◦.

To compare our theory and simulations, we first note that
at resonance (�ω = 0), the relation, Eq. (13), predicts that the
phase-locked angle found between �E, �G should equal 
s(�ω

= 0) = −α + π /2. In our numerical experiment, 
s(�ω

= 0) was measured to be 145.7◦, as seen in Fig. 6(b) where we
plot 
s as function of ωf, yielding α′ = −0.9722 = −55.70◦.
(We here use α′ to distinguish from the value of α that is di-
rectly calculated from the response functions.) This value α′

is closely matched by our response function calculation above
(i.e., α), with an error about 2.2◦.

Figure 7 shows the typical evolution for 
, the spiral
phase relative to the electric field, in the case of phase-locking
[Fig. 7(a)] or no phase-locking [Fig. 7(b)]. Fig. 7(a) shows the
change of 
 as time elapses for the CCW spiral in the pres-
ence of the CCW CPEF with E = 0.05 and ωf = 0.87. One
observes that 
 eventually reaches a constant, indicating fre-
quency synchronization (i.e., phase-locking). In Fig. 7(b) with
the same parameters but with CW spiral waves, however, 


changes periodically with period close to 2π /(ωf + ω0). The
system behavior in both panels is consistent with Eq. (12).

In the synchronization case, 
s is determined by Eq. (13),
implying that both �ω and E affect the phase-locked angle

s. In Fig. 8(a), we predict the dependence of 
s on E given
ωf = 0.87 (i.e., �ω = 0.02) using Eq. (13) with A and above
mentioned values of α (and α′). One observes that the simu-
lation results agree well with the theoretical prediction from
Eq. (13). Similarly, the graph in Fig. 8(b) of 
s as a function
of ωf given E = 0.05 also shows a nice correspondence be-
tween simulations and theory. Note that a linear dependency
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FIG. 8. A comparison of theory with numerical simulations. (a) 
s as a func-
tion of E for ωf = 0.87; (b) 
s as a function of ωf for E = 0.05. Theoretical
predictions from Eq. (13) with α′ = −0.9722 [calculated from Eq. (13) and
Fig. 6(b)] and α = −0.9334 (calculated from the response functions) are
used. The same system size as in Fig. 4 is used to compute these plots.

of 
s on ωf is found since arccos(x) ≈ π/2 − x in the fre-
quency synchronization regime shown here.

To give a complete comparison between these predictions
and numerical results, we present in Fig. 9 the Arnold tongue
for synchronization in the parameter space of ωf and E. In
this figure, crosses denote the numerical results of the syn-
chronization. For each value of E shown, we started simula-
tions in the synchronization zone and increased or decreased
ωf until synchronization could no longer be established. The
couples (E, ωf) where synchronization failed are represented

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

ω
f

E

 

 

sync.
no sync.
theory

FIG. 9. Arnold synchronized tongue. The crosses and square denote the nu-
merical simulations where synchronization and unsynchronization behaviors
are observed; the red line shows the boundary derived from Eq. (12) with A
= 1.505 (without free parameters). To compute this plot, we use the same
system size as in Fig. 4.

by the blue squares in Fig. 9. For comparison, the red line
denotes the synchronization boundary that is derived from
Eq. (14). We find that a good agreement is achieved for the
small E. Note that, for E > 0.05 deviations are visible which
may be captured by extending our linear theory to high orders
in E in the future.

Finally, it is noted that synchronous mechanism plays an
important role in the chiral selection shown in Figs. 1 and 2,
however, such kind of chiral symmetry breaking is not only
limited to the synchronous region as seen by comparing the
Arnold tongue (Fig. 9) with the phase diagram (Fig. 3). This is
because even in the not fully synchronized region, the CPEF
can also cause a chirality-dependent frequency response as
illustrated in Fig. 4 (outside the shaded region). For example,
in the unsynchronized regime but still close to synchronous
regime, the spiral frequency would be still larger (smaller)
than ω0 if we apply the CPEF with ωf larger (smaller) than
ω0. Therefore even in the non-synchronous region, we could
also observe chiral symmetry breaking and pattern selection.

V. DISCUSSION

By studying the instability of spiral pairs in the Oregona-
tor model subject to the CPEF, we demonstrated and quanti-
tatively analyzed the chiral selection of spiral pairs controlled
by a chiral electric field. Our results are different from the pre-
vious findings. On one hand, prior to our work, most of works
showed that the chirality of the dominant pattern seemed fully
determined by that of the applied field, however, our work
showed another possibility in chemical media that the dom-
inant spiral pattern could be the same as or opposite to the
chirality of the CPEF. On the other hand, in previous work,
chirality-dependent frequency response, especially frequency
synchronization between spiral waves and the applied CPEF,
was only discussed in the phenomenological level and the dy-
namical mechanism was unclear. In the present work, based
on the response function theory, we found the coupling of spi-
ral waves and the applied CPEF can be transformed to a phase
equation that governs the evolution of the angle of spiral ori-
entation relative to the electrical field. From this equation, we
could make several quantitative predications that were vali-
dated by our numerical simulations. It is worth noting that
our findings were quite robust and insensitive to the specific
models. For example, we also checked the main results in
Barkley’s model63 and found similar results. From this point
of view, our present work allows us to understand better about
the interaction between spiral waves and the CPEF and pro-
vides a solid basis for chirality control in excitable media.

We would like to point out that the proposed theory for
frequency synchronization is applicable for the rigidly ro-
tating spiral waves only. However, previous work showed
that such CPEF induced frequency synchronization or phase-
locking also occurs for the meandering spiral waves.36 It
would be important to extend our theory in future to describe
such phase locking phenomenon for the meandering case.

Finally, the findings present in this work can be directly
tested in chemical experiments, since the CPEF has been re-
cently realized in the BZ system.35 Compared to the spi-
ral turbulence state,35 we believe that it is easier to observe
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chiral symmetry breaking and pattern selection by consider-
ing a stable spiral pair under the CPEF. For, to observe chiral
symmetry breaking in the spiral turbulence state, in addition
to consider the wave competition between spiral waves, we
also need to consider the issue of stabilization of the unsta-
ble spirals. This would take longer time and require stronger
intensity of the CPEF. The latter factor is quite important in
the implementation of the CPEF in the laboratory because the
stronger intensity of the CPEF could cause increased heat pro-
duction which leads to some serious problems (e.g., higher or
uncontrollable excitability) for the experimental set-up.35

VI. CONCLUSION

In summary, we have investigated chiral symmetry break-
ing and pattern selection in RD systems (Oregonator model)
coupled to the CPEF. We have shown that the chirality of
dominant pattern can be well controlled by the applied elec-
tric field in the synchronous (or unsynchronous) regime. More
interestingly, we showed that we can select an opposite chiral
pattern by tuning the forcing frequency instead of changing
the chirality of the CPEF. We attribute this scenario to the
chirality-dependent frequency response to the CPEF, which
can be quantitatively described by the Adler equation that
we have originally derived using response function theory.
Our predictions agree well with the numerical results. Finally,
considering the recent realization of the CPEF in the BZ sys-
tem and that our results are robust throughout numerical simu-
lations, we believe that our findings presented here are highly
likely to be observed in the laboratory.
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