2,781 research outputs found

    AKR1C1 overexpression attenuates the inhibitory effect of glycyrrhizic acid on gastric cancer cell proliferation and migration

    Get PDF
    Purpose: To investigate the involvement of aldo-keto reductase family 1 member C1 (AKR1C1) in glycyrrhizic acid-mediated gastric cancer.Methods: Immunohistochemistry, quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), and western blot were used to assess AKR1C1 expression in gastric cancer. Cell proliferation was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and colony formation assay. Apoptosis was evaluated by flow cytometry. Transwell and wound healing assays were performed to investigate cell invasion and migration, respectively.Results: AKR1C1 was significantly upregulated in gastric cancer tissues and cells (p < 0.01). AKR1C1 knockdown suppressed cell proliferation, migration, and invasion of gastric cancer, but promoted cell apoptosis. Glycyrrhizic acid treatment reduced AKR1C1 expression in gastric cancer cells (p < 0.05). AKR1C1 overexpression attenuated the glycyrrhizic acid-induced increase in gastric cancer cell apoptosis as well as the decrease in cell proliferation, migration, and invasion.Conclusion: AKR1C1 contributes to gastric cancer cell proliferation and metastasis and counteracts the suppressive effects of glycyrrhizic acid on gastric cancer cell proliferation and metastasis

    Integrated Power Supply for MEMS Sensor

    Get PDF
    The recent expansion of wireless sensor networks and the rapid development of low-power consumption devices and MEMS devices have been driving research on harvester converting ambient energy into electricity to replace batteries that require costly maintenance. Harvesting energy from ambient environment vibration becomes an ideal power supply mode. The power supply module can be integrated with the MEMS sensor. There are many ways to convert ambient energy into electrical energy, such as photocells, thermocouples, vibration, and wind and so on. Among these energy-converting ways, the ambient vibration energy harvesting is more attractive because the vibration is everywhere in our daily environment. Based on the analysis of the basic theory of the electret electrostatic harvester, the basic equations and equivalent analysis model of electret electrostatic harvester are established. The experimental tests for the output performance of electret electrostatic harvester are completed. For the electret material, the material itself can also provide a constant voltage to avoid the use of additional power, which provides an effective way for electrostatic harvesting. Therefore, the electret electrostatic harvesting structure is a kind of ideal energy harvesting method using ambient vibration and can be easily integrated with the MEMS system

    Corrosion Behavior of Alloy C-276 in Supercritical Water

    Get PDF
    The corrosion behavior of Alloy C-276 in high-temperature and high-pressure water at 500°C and 25 MPa, respectively, was investigated by means of mass gain, scanning electron microscopic observation, and X-ray diffraction. The results indicated that the mass gain rate of Alloy C-276 in supercritical water obeys the parabolic law. The oxide scale was formed on Alloy C-276 with a dual-layer structure, mainly consisting of an outer Ni-rich layer and an inner Cr2O3/NiCr2O4 mixed layer. Tiny microcracks can also be found in the oxide scale if exposed for longer time. Meanwhile, higher temperature promotes oxide rate and results in thermal stress in the oxide film

    Characterization of the microRNA408-LACCASE5 module as a regulatory axis for photosynthetic efficiency in Medicago ruthenica: implications for forage yield enhancement

    Get PDF
    Medicago ruthenica is closely related to Medicago sativa, a commonly cultivated forage. Characterized by its high tolerance to environmental stress, M. ruthenica is a valuable genetic resource. However, low yield limits its large-scale utilization. Leaf morphology, an important agronomic trait, is closely related to forage yield and photosynthetic efficiency. In the presented study, “Correlation of Leaf Morphology and Photosynthetic Performance with Forage Yield in Medicago ruthenica: The Underlying Molecular Mechanisms,” comprehensive data analysis revealed a significant positive association between leaf width and leaf area with forage yield in Medicago ruthenica (p < 0.05). The specific cultivar “Mengnong No.1 (MN No.1) had a large leaf area, and its physiological parameters related to photosynthetic characteristics were superior. Anatomical examination revealed that the leaves of MN No.1 had strong palisade tissue and compact cell structure. Subsequent investigations, utilizing small RNA and transcriptome sequencing, discerned critical miRNA-target gene networks that underpin the high photosynthetic efficiency in M. ruthenica. A total of 63 differentially expressed miRNAs (DEMs) were identified, inclusive of several well-characterized miRNAs such as miR408, miR171, and miR398. These miRNAs were predicted to target 55 genes (mRNAs), of which 6 miRNA-target gene pairs, particularly those involving miR408and miR171, exhibited inverse expression patterns. Among the six postulated miRNA-target gene pairs, the targeted cleavage of LACCASE5 (LAC5) by miR408 was conclusively validated through degradome sequencing, with the cleavage site pinpointed between the 9th and 10th nucleotides from the 5′end of miR408 via the 5′-RLM-RACE assay. Therefore, it is posited that the miR408-MrLAC5 module constitutes a central mechanism in fostering high photosynthetic efficiency in M. ruthenica. Moreover, these findings also provide valuable information for further study of the regulatory genes and miRNA functions of forage yield in legume forage

    MHC-I promotes apoptosis of GABAergic interneurons in the spinal dorsal horn and contributes to cancer induced bone pain

    Get PDF
    Cancer induced bone pain (CIBP) remains one of the most intractable clinical problems due to poor understanding of its underlying mechanisms. Recent studies demonstrate the decline of inhibitory interneurons, especially GABAergic interneurons in the spinal cord, can evoke generation of chronic pain. It has also been reported that neuronal MHC-I expression renders neurons vulnerable to cytotoxic CD8+ T cells and finally lead to neurons apoptosis in a variety neurological disorders. However, whether MHC-I could induce the apoptosis of GABAergic interneurons in spinal cord and contribute to the development of CIBP remains unknown. In this study, we investigated roles of MHC-I and underlying mechanisms in CIBP on a rat model. Our results showed that increased MHC-I expression on GABAergic interneurons could deplete GABAergic interneurons by inducing their apoptosis in the spinal dorsal horn of tumor-bearing rats. Pretreatment of MHC-I RNAi-lentivirus could prevent the apoptosis of GABAergic interneurons and therefore alleviated mechanical allodynia induced by tumor cells intratibial injection. Additionally, we also found that CD8+ T cells were colocalized with MHC-I and GABAergic neurons and presented a significant and persistent increase in the spinal cord of tumor-bearing rats. Taken together, these findings indicated that MHC-I could evoke CIBP by promoting apoptosis of GABAergic interneurons in the dorsal horn, and this apoptosis was closely related to local CD8+ T cells

    Quantum key distribution without alternative measurements and rotations

    Full text link
    A quantum key distribution protocol based on entanglement swapping is proposed. Through choosing particles by twos from the sequence and performing Bell measurements, two communicators can detect eavesdropping and obtain the secure key. Because the two particles measured together are selected out randomly, we need neither alternative measurements nor rotations of the Bell states to obtain security.Comment: 11 pages, no figures, a modified version of quant-ph/0412014, add a security proof and delete the identification par
    • …
    corecore