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Abstract: 

Cancer induced bone pain (CIBP) remains one of the most intractable clinical problems due 

to poor understanding of its underlying mechanisms. Recent studies demonstrate the decline 

of inhibitory interneurons, especially GABAergic interneurons in the spinal cord, can evoke 

generation of chronic pain. It has also been reported that neuronal MHC-I expression renders 

neurons vulnerable to cytotoxic CD8
+
 T cells and finally lead to neurons apoptosis in a 

variety neurological disorders. However, whether MHC-I could induce the apoptosis of 

GABAergic interneurons in spinal cord and contribute to the development of CIBP remains 

unknown. In this study, we investigated roles of MHC-I and underlying mechanisms in CIBP 

on a rat model. Our results showed that increased MHC-I expression on GABAergic 

interneurons could deplete GABAergic interneurons by inducing their apoptosis in the spinal 

dorsal horn of tumor-bearing rats. Pretreatment of MHC-I RNAi-Lentivirus could prevent the 

apoptosis of GABAergic interneurons and therefore alleviated mechanical allodynia induced 

by tumor cells intratibial injection. Additionally, we also found that CD8
+
 T cells were 

colocalized with MHC-I and GABAergic neurons and presented a significant and persistent 

increase in the spinal cord of tumor-bearing rats. Taken together, these findings indicated that 

MHC-I could evoke CIBP by promoting apoptosis of GABAergic interneurons in the dorsal 

horn, and this apoptosis was closely related to local CD8
+
 T cells. 

 

Keywords:  MHC-I    Cancer induced bone pain    GABAergic interneurons    

disinhibition      CD8
+
 T cells  
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Introduction 

Cancer induced bone pain (CIBP) is a serious complication of bone sarcomas or other 

malignant tumors that metabolize to bone. It is reported that skeletal metastases affect more 

than 400,000 persons in the United States every year and among them about 75%–95% of 

patients experience CIBP (Jimenez-Andrade et al., 2010; Sabino and Mantyh, 2005). Patients 

with CIBP often experience moderate to severe pain and suffer from a poor quality of life 

(Jimenez-Andrade et al., 2010). Unfortunately, persistent pain is often difficult to treat 

effectively due to complicated underlying mechanisms (Payne et al., 1998). In recent years, 

significant progresses have been made in exploring the pathophysiology of CIBP via a variety 

of bone cancer animal models. Nonetheless, the detailed molecular mechanism of CIBP is 

still relatively unknown. 

Chronic pain, such as neuropathic pain and CIBP, is characterized by mechanical 

allodynia and hyperalgesia. The transmission of nociceptive information from primary 

afferent neurons to higher cerebral centers is regulated through a balance between excitatory 

and inhibitory signals (Kuner, 2010). Recent studies have demonstrated that the decline of 

tonic and phasic inhibitory control or “disinhibition” in the dorsal horn accounts for the 

expansion of pain information which then induce hyperalgesia and allodynia (Sivilotti and 

Woolf, 1994; Yaksh, 1989). Since γ-aminobutyric acid (GABA) is a well-known major 

inhibitory neurotransmitter in the central nervous system (CNS), the downregulation of the 

GABA-releasing interneurons in the spinal cord has been thought to be responsible for 

chronic pain (Kingery et al., 1988; Xu et al., 1992; Yaksh, 1989). This was also evidenced by 

the reduction of the GABAergic interneurons after nerve and spinal injury (Thams et al., 
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2008; Zhang et al., 1994) and the fact that intrathecal application of GABA analog gabapentin 

or GABA could alleviate chronic pain (Eaton et al., 1999; Matthews and Dickenson, 2002).  

We hypothesized that the loss of GABAergic interneurons leading to disinhibition in spinal 

dorsal horn could contribute to CIBP, however, the underlying mechanism was still unclear.  

Accumulating evidence indicated that neuronal MHC-I molecule had great effects on 

neuronal signaling in the CNS (Corriveau et al., 1998; Glynn et al., 2011; Huh et al., 2000). 

Neurons could express high levels of MHC-I mRNA and/or protein in response to axotomy 

(Linda et al., 1998; Maehlen et al., 1988; Oliveira et al., 2004), cytokines treatments 

(Neumann et al., 1995; Victorio et al., 2012; Wong et al., 1984), and changes in electrical 

activities (Corriveau et al., 1998; Neumann et al., 1995). Recent studies have also indicated 

that MHC-I expression renders neurons vulnerable to CD8
+ 

T cells and finally result in 

neuron apoptosis in vivo (Medana et al., 2000) and cause Parkinson’s disease (Cebrian et al., 

2014). We hypothesized that MHC-I expressed on GABAergic interneurons could induce the 

apoptosis of GABAergic interneurons and involve in the development of CIBP. 

To test this notion, short hairpin RNA lentivirus was constructed to knockdown the 

expression of MHC-I in spinal dorsal horn. A rat model of tumor cells intratibial injection 

was established to evaluate pain related behaviors. The apoptosis of GABAergic interneurons 

was detected by TUNEL staining. Cleaved (active) caspase-3 (Casp-3a) was examined to 

illustrate the apoptosis mechanisms. Flow cytometry and immunoblot were used to test the 

expression of CD8
+
 T cells. Our result indicated that tumor cells implantation induced the 

upregulation of MHC-I on GABAergic interneurons and pain related behaviors which were 

reversed by MHC-I RNAi lentivirus. The apoptosis of GABAergic interneurons induced by 
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MHC-I in the spinal cord were also inhibited by MHC-I RNAi lentivirus. Additionally, we 

also found that CD8
+
 T cells were colocalized with MHC-I and GABAergic neurons and 

presented a significant and persistent increase in the spinal cord of tumor-bearing rats. These 

findings indicated that MHC-I could evoke CIBP by promoting apoptosis of GABAergic 

interneurons in the dorsal horn, and this apoptosis was closely related to local CD8
+
 T cells. 

 

Materials and methods 

Animals 

According to the literatures(Helferich et al., 2008) (Bu et al., 2014; Guan et al., 2015; Ke 

et al., 2013; Liu et al., 2013; Xu et al., 2013; Yang et al., 2015), all experiments were 

performed on female adult Sprague-Dawley rats (180–230 g), provided by Tongji Medical 

College, Huazhong University of Science and Technology (HUST), Wuhan, PR China. r . All 

rats were habituated in a 22°C ± 0.5°C, relative humidity 40%–60%, a standard 12-h 

light/12-h dark cycle temperature- and humidity-controlled environment with abundant food 

and drinking. Rats were then randomly divided into four experimental groups (Sham, Tumor, 

Tumor+NC-LV, Tumor+RNAi-LV). Nontargeting control lentivirus (NC-LV) or 

β2-microglobulin RNAi-Lentivirus (RNAi-LV) were injected into the lumbar spinal cord of 

Tumor+NC-LV or Tumor+RNAi-LV rats respectively three days before the establishment of 

bone cancer rat model. The experimental procedures were implemented under the supervision 

of Experimental Animal Care and Use Committee of HUST and were in accordance with the 

guidelines published in the National Institutes of Health Guide for Care and Use of 

Laboratory Animals.  
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Construction of β2-microglobulin RNAi -Lentivirus 

In accordance with previous reports, we selected β2-microglobulin as the siRNA target to 

knockdown the expression of MHC-I (Cebrian et al., 2014; Yang et al., 2007). Rat 

β2-microglobulin siRNA was generated by Shanghai GeneChem Co. according to these 

sequences: sense 5’-GTATATGCTTGCAGAGTTA -3’ antisense 

5’-TAACTCTGCAAGCATATAC-3’. And the nontargeting control lentivirus (NC-LV) was 

similar to β2-microglobulin RNAi –Lentivirus (RNAi –LV) except for expressing shRNAs. 

 

Stereotaxic injection of virus in dorsal horn 

NC-LV or RNAi-LV were injected into the lumbar spinal cord of Tumor+NC-LV or 

Tumor+RNAi-LV rats respectively three days before the establishment of bone cancer rat 

model. Injection of virus in the dorsal horn was prepared following the previous studies 

(Inquimbert et al., 2013; Meunier et al., 2007). Briefly, after deep anesthesia, cutaneous 

incisions were performed to expose the backbone under semi-sterile conditions. Then we 

found T13 and L1 vertebrae and performed L1 vertebra laminectomy to expose L3-L5 lumbar 

spinal cord. Two holes of 1 mm diameter (separated 2 mm) were cautiously drilled on the 

right 0.5mm besides the spinal cord midline. Then the piamater was opened, a glass capillary 

(35 ± 10mm diameter) filled with lentivirus solution was directed stereotaxically to the 

superficial laminae of the spinal dorsal horn (2μL/site; 0.5 μL/min). The needle was then left 

for 2 minutes in place before gentle withdrawal. After surgery, rats were kept in an insulation 

can for 30 min to recover from anesthesia before being returned to their separated cages. 
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Preparation of tumor cells 

Walker 256 rat mammary gland carcinoma cells suspension (1ml, 1× 10
7
 cells/ml) was 

injected into the abdominal cavity of female rats. A week later, tumor cells were extracted and 

washed with D-Hanks solution. Cell suspension was adjusted to a concentration of 10
6 

cells/ml. Tumor cells of identical final concentration that had been boiled for half an hour 

were used in sham groups. 

 

Bone cancer model 

Since CIBP is usually caused by various metastatic bone disease such as metastatic breast 

and prostate carcinomas. Thus, in this study, Walker 256 rat mammary gland carcinoma cells 

was used to build bone cancer model to mimic the clinic pathological process of CIBP. Three 

days after lentivirus injection, the bone cancer model was constructed using the above 

mentioned ascites tumor cells in accordance with previous studies (Huang et al., 2014; Shen 

et al., 2014). First, under deep anesthesia, superficial incisions were made to expose the tibia. 

A hole was cautiously drilled at the lower one third of the right tibia. Then a volume of 10 μL 

either containing Walker 256 cells (10
4
 cells), or boiled cells was injected into the bone cavity 

with a 50 μL micro-syringe. The micro-syringe was then left for 1 minute in place to allow 

cells to fill the bone cavity. After that the hole was immediately closed with bone wax. 

 

Behavioral studies 

Pain related behaviors were measured on day 0 (before surgery ), 3d, 6d, 9d, 12d, 15d, 
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18d, and 21d after intratibial injection of either tumor cells or boiled cells. Mechanical 

allodynia was evaluated using an Analgesy-Meter (Ugo Basile 37400, Italy), a programmed 

version of the von Frey hair as described before (Clark et al., 2007; Zhou et al., 2008a, b). 

Animals were kept in individual Plexiglas boxes with a wire mesh floor and accustomed for 

half an hour. A computer driven filament was located under the floor and focused on the hind 

paw. Continuous and incremental pressure was applied onto the plantar surface of the hind 

paw until the paw was withdrawn or the preset cut-off point was reached. A cut-off of 50g 

was set to prevent any tissue damage (Marchand et al., 2009; Thacker et al., 2009; Wodarski 

et al., 2009). The force in grams needed to induce paw withdrawal was named paw 

withdrawal threshold (PWT). Every rat model accepts the four values following the 5 minute 

interstimulus interval. 

 

Isolation of mononuclear cells and flow cytometry 

Rats were deeply anesthetized and perfused with ice-cold 1× Hanks’ Balanced Salt 

Solution (HBSS), the spinal cords and lumbar local lymph nodes (LN) of sham and 

tumor-bearing rats were collected on day 7, 14d, and 21d post tumor cell inoculation. Then 

the tissues were homogenized and filtered through a 200-mesh sieve to obtain total cells 

suspensions. Mononuclear cells were isolated from the above mentioned cell suspensions by 

discontinuous Percoll gradients according to previously described procedures (Pino and 

Cardona, 2011). In brief, the cell pellet was resuspended in 7 mL 30% Percoll [one part of 10 

× HBSS mixed with nine parts of Percoll solution (GE healthcare, USA)]. A disjointed 

Percoll gradient was achieved by adding 3 ml of 70% Percoll below and 8 ml of 30% Percoll 
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solution above. Samples were then centrifuged for 30 min at 500G 18°C without breaking. 

The resulting mononuclear cell part (30/70％ Percoll interface) was carefully collected and 

rinsed twice with 1× HBSS. The number of total mononuclear cells was counted using a 

hemacytometer with trypan blue before using a fluorescence activating cell sorter (FACS). 

Monoclonal antibodies were purchased from Biolgend (CA, USA) and determined the 

optimal concentrations in preliminary trials. Approximately 100 μL of the cell suspensions 

derived from spinal cords and lumbar local LN, respectively, were double-labeled with Alexa 

Fluor 647-conjugated anti-rat CD3 and phycoerythrin (PE)-conjugated anti-rat CD8 for the 

detection of CD8
+ 

T cell. After incubating on ice for 30 min, the cell suspensions were 

washed twice with 0.1 M phosphate-buffered saline (PBS). All stained cells were finally 

resuspended in 2% paraformaldehyde /PBS and kept at 4 °C until analysis. About 10,000 

events (for spinal cord mononuclear cells and cells from lumbar LN) were analyzed using an 

ACEA NovoCyte
TM 

flow cytometer. Non-stained cells from identical tissue with identical 

procedures were used as negative control for data analysis. 

 

Immunohistochemistry 

After being deeply anesthetized, the animals’ lumbar spinal cord on day 7, 14d, and 21d 

post tumor cells inoculation was rapidly removed, snap-frozen in 2-methylbutane (Sigma, 

USA) and stored at −80°C. For immunohistochemistry, cryostat sections of 15um were fixed 

in ice-cold acetone for 10 min. After increasing membrane permeability and blocking 

nonspecific binding, the slides were incubated for 24h at 4°C with primary antibodies: anti- 

GAD65 + GAD67 (1:100, ab11070; Abcam, Cambridge, UK), anti-MHC class I (1:100, 
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ab22367, OX-18; Abcam, Cambridge, UK), anti- Cleaved Caspase-3 (1:200, 9664s; Cell 

signaling Technology, CST), anti-CD8 (1:200, sc-7188; Santa Cruz),In Situ Apoptosis 

Fluorescein Detection Kit (Cat. S7111, Millipore). Except for cleaved caspase-3- slides which 

were treated by Alexa Fluor® 488-conjugated affiniPure fab fragment immunoglobulin G 

(Jackson ImmunoResearch Laboratories), all the other sections were treated with either 

Dylight-488 or Dylight-594-coupled secondary antibodies diluted in PBS for 2h at room 

temperature(RT). 

Image acquisition and analysis were conducted using the Image-pro plus 6.0 software. 

About 9-16 images from 4 rats were collected and analyzed for each group within an 

experiment. For cell quantifications, positive cells were counted manually in 10000μm
2
 of 

each section and 24 sections per sample from 4 rats were used. 

 

Real-time PCR 

Rats lumbar spinal cord were obtained on day 7, 14d, and 21d post tumor cells 

inoculation. Total RNA from the above tissues were extracted using Trizol Reagent 

(Invitrogen, USA). Samples were then synthesized to cDNA by reverse transcription. The 

following forward (F) and reverse (R) primers were used: β2-microglobulin: 

(F):5’ACCCTCATGGCTACTTCTGCTTT 3’, (R): 5’CCTTTCTTAGTCCCTTTCCTCTG 3’; 

β–actin: sense primers (F):5’ CACGATGGAGGGGCCGGACTCATC3’, (R): 

5’TAAAGACCTCTATGCCAACACAGT3’; the constitutively expressed  –actin gene was 

used as an internal control. Thermal cycling was completed on real-time PCR system 

(StepOne Plus, Applied Biosystems) at 95°C for 30 seconds followed by 45 cycles at 95°C 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

11 

 

for 8 seconds and 60°C for 32 seconds. 

 

Western blot analysis 

Tissues of spinal lumbar enlargements (L4–L5) on day 7, 14d, and 21d post tumor cells 

inoculation were quickly removed and homogenized in ice-cold RIPA lysis buffer. Tissue 

lysates were collected and equal amounts of protein (30-60 mg) from each sample were 

separated in SDS/PAGE gel, and then transferred to polyvinylidene difluoride membranes 

(Roche, USA). After blocking in 5% Bovine Serum Albumin in Tris buffered saline with 

Tween 20 (TBST) buffer for 1.5h at RT, the membranes were incubated overnight at 4°C with 

primary antibodies: anti- GAD65 + GAD67 (1:1000, ab11070; Abcam, Cambridge, UK), 

anti-MHC class I (1:500, ab22367, OX-18; Abcam, Cambridge, UK), anti- Cleaved 

Caspase-3  (1:1000, 9664s; Cell signaling Technology, CST), anti-CD8 (1:500, sc-7188; 

Santa Cruz). Subsequently, blots were incubated with horseradish peroxidase-linked 

secondary antibodies for 40 min at RT. After extensive washing, protein bands were finally 

detected by electrochemiluminescence (ECL) solution (Pierce, USA) exposed to films. For 

densitometry analysis, blots were scanned and quantified with Scion Image free software 

(Meyer Instruments). 

 

Statistical analyses 

All data were analysed using SPSS (V16.0) and expressed as mean ± SEM. To analyze 

the differences among groups, one-way repeated measures analysis of variance or two-way 

analysis of variance were used followed by the Bonferroni post-hoc test. Significance was 
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indicated by P < 0.05. 

 

Results 

Elevation of MHC-I in the spinal dorsal horn initiated by tumor cells implantation 

To investigate whether MHC-I was involved in the development of CIBP, we tested the 

location and expression of MHC-I in the lumbar dorsal horn by double immunofluorescence 

with MHC-I and GABAergic interneurons marker GAD65+67. Immunostaining results 

showed that MHC-I predominantly expressed on GABAergic interneurons in the dorsal horn 

of tumor-bearing rats (Fig.1a). Immunostaining analysis showed that GABAergic 

interneurons were significantly decreased in a time-dependent manner while MHC-I was 

increased significantly, reaching a peak at day 7 post tumor cells inoculation (Fig.1b). 

However, the upregulation of MHC-I on GABAergic interneurons in the dorsal horn of 

tumor-bearing rats was reversed by pretreatment with reconstructed β2-microglobulinRNAi- 

lentivirus (RNAi- LV), but not NC-LV. (Fig. 1a-b). Lentivirus transfection was confirmed by 

the expression of enhanced green fluorescent protein (EGFP) in spinal dorsal horn (Fig. 1c).  

Quantification analysis of β2-microglobulin mRNA (represent for MHC-I mRNA) and 

MHC-I protein agreed with the result of immunofluorescence. Pretreatment with RNAi-LV 

prevented the increase of MHC-I mRNA and protein in the spinal cord (Fig. 1d-e). Together, 

these results suggested change of MHC-I expression associated with CIBP and that specific 

RNAi-LV could efficiently decline MHC-I expression. 

 

MHC-I was essential for the development of CIBP 
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To mimic clinical CIBP, a rat model of CIBP was established by walker256 mammary 

gland carcinoma cells intratibial injection. The behavior tests were performed every three 

days after surgery. PWT was tested as a measurement of mechanical allodynia. ,  

Tumor-bearing rats showed a persistent decline of PWT during the development of CIBP 

(n=6, *P <0.05). To examine whether MHC-I was involved in CIBP,  RNAi–LV was 

injected into the lumbar spinal cord three days before the establishment of bone cancer rat 

model. Our data indicated RNAi-LV, instead of NC-LV, attenuated mechanical allodynia 

initiated by tumor cells injection ((n=6, 
#
P < 0.05). Therefore, behavioral test data suggested 

that MHC-I contributed to CIBP. 

 

MHC-I induced apoptosis of GABAergic interneurons in spinal dorsal horn  

To determine whether the apoptosis of GABAergic interneurons was involved in the 

development of CIBP, we first examined the presence of apoptosis cells by terminal 

deoxynucleotidyl transferase (TdT)-mediated DNA nick-end labeling (TUNEL) staining in 

dorsal horn of tumor-bearing rats. TUNEL labeling revealed a large number of 

TUNEL-positive cells in the spinal dorsal horn of tumor-bearing rats which was prevented by 

pretreatment of RNAi-LV (Fig. 3a, 3c). To investigate whether the apoptosis cells were 

GABAergic interneurons, we performed fluorescent double-labeling with GAD and TUNEL. 

The results showed thatTUNEL staining was localized in the GABAergic interneurons. The 

merged picture indicated the apoptosis of GABAergic interneurons in the dorsal horn of 

tumor-bearing rats (Fig.3b). Quantitative analysis of GAD protein indicated that GABAergic 

interneurons decreased in a time dependent manner in tumor-bearing rats which was 
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prevented by RNAi-LV (Fig. 3d). These results suggested that MHC-I induced apoptosis of 

GABAergic interneurons in the spinal cord of tumor-bearing rats. 

 

Apoptosis of GABAergic interneurons via caspase-3 activation 

To demonstrate whether the initiation of apoptosis was associated with the executioner 

caspase-3 in the dorsal horn, we assayed the co-localization of cleaved (active) caspase-3 

(Casp-3a) and GAD in the spinal dorsal horn. The Casp-3a immunoreactivity was localized in 

GABAergic interneurons and markedly elevated in the spinal cord of tumor-bearing rats 

which was reversed by RNAi-LV, but not NC-LV (Fig. 4a, 4c). We then performed 

fluorescent double-labeling with Casp-3a and TUNEL in the dorsal horn. The merged picture  

showed that TUNEL staining was localized in the Casp-3a positive cells (Fig.4b). Combined 

with the previous double staining of GAD and TUNEL, our results indicated that the 

apoptosis of GABAergic interneurons was mediated by caspase-3 activation. Quantitative 

analysis of Casp-3a protein indicated that Casp-3a increased in a time dependent manner in 

tumor-bearing rats which was prevented by RNAi-LV (Fig. 4d). These findings suggested 

that the apoptosis of GABAergic interneurons induced by MHC-I was dependent on active 

caspase-3.   

 

Apoptosis of GABAergic interneurons induced by MHC-I was closely related to CD8
+
 T 

cells.  

It has been reported that MHC-I induced neuronal apoptosis is closely associated with 

CD8
+
 T cells in vivo (Cebrian et al., 2014; Sanchez-Ruiz et al., 2008). To investigate whether 
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CD8
+
 T cells were increased in the development of CIBP, we used flow cytometry to check 

the expression of CD8
+ 

T lymphocytes by double labeling CD3 and CD8 with mononuclear 

cells extracted from the tumor-bearing rats lumbar spinal cord. The number of CD8
+ 

T cells 

(CD3
+
 CD8

+
) showed a persistent increase in the spinal cord of tumor-bearing rats (Fig. 1a-b), 

which was in parallel with the continuous decrease of GABAergic interneurons. Phenotypic 

characterization of tumor-bearing rats’ spinal cord lymphocytes showed that CD8
+ 

T cells 

(CD3
+
CD8

+
) composed of 74% ± 2.8% among total CD3

+
 T cells, while CD4

+ 
T cells 

(CD3
+
CD4

+
) constituted 24% ± 2.3% of all CD3

+
 T cells (Fig. 5a). The 2.8 to 1 ratio of CD8

+ 

T cells to CD4
+ 

T cells in the spinal cord contrasted with the constant 1 to 1.89 ratio detected 

in the lumber lymph nodes in the same tumor-bearing rats, indicating that a larger percentage 

of CD8
+
 T cells infiltrated into the spinal cord during the pathological process of CIBP (Fig. 

5c). The western blot confirmed this result (Fig. 5d). Immunofluorescent staining of CD8 

showed that CD8
+
 T cells expressed in the spinal dorsal horn of tumor-bearing rats (Fig. 5d). 

To investigate whether MHC-I inducing apoptosis of GABAergic interneurons was related to 

CD8
+
 T cells, we  performed double immunostaining with CD8 and MHC-I as well as 

double immunostaining with CD8 and GABAergic neurons. The results indicated CD8
+
 T 

cells were colocalized with MHC-I and GABAergic neurons.. Taken together, these findings 

suggested apoptosis of GABAergic interneurons induced by MHC-I was closely related to 

CD8
+
 T cells.. 

 

Discussion 

In the present study, we showed that MHC-I expression increased on GABAergic 
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interneurons in the spinal dorsal horn of tumor-bearing rats. Increased expression of MHC-I 

could deplete GABAergic interneurons in the spinal cord by promoting its apoptosis via 

caspase-3 signaling pathway. Pretreatment of RNAi-LV could prevent the apoptosis of 

GABAergic interneurons in the spinal cord and therefore reverse mechanical allodynia of  

tumor-bearing rats. Since previous studies revealed that MHC-I induced neuronal apoptosis 

was closely associated with CD8
+
 T cells in vivo (Cebrian et al., 2014; Medana et al., 2000), 

we next showed that CD8
+
 T cells were markedly elevated in the spinal cord of  

tumor-bearing rats and were colocalized with MHC-I and GABAergic interneurons. The 

persistent increase of CD8
+
 T cells was in parallel with the continuous decrease of 

GABAergic interneurons. Taken together, these results demonstrated that MHC-I could evoke 

CIBP by promoting apoptosis of GABAergic interneurons in the spinal cord and this 

apoptosis is related to CD8
+
 T cells in the CNS. 

The MHC genes can approximately be separated into three major groups (class I –III), 

among which MHC class I exhibits an amazing polymorphism (Thams et al., 2008). MHC-I 

molecules are trimeric proteins which consist of a transmembrane heavy chain, a soluble 

β2-microglobulin light chain, and a peptide bound to the heavy chain. Since β2m is required 

for stable cell-surface expression of most MHC-I proteins, the lack of β2m could make 

MHC-I detach from the cell surface (Chacon and Boulanger, 2013). Thus in our study, 

β2-microglobulin RNAi–LV was constructed to effectively deplete the expression of MHC-I. 

Despite the CNS “immune privilege”, there is now clear evidence for a high-level expression 

of MHC-I genes in the CNS, and a significant role of certain class I molecules in neuronal 

differentiation, brain development, selective maintenance of synapses, as well as influence of 
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MHC-I antigens on behavior (Huh et al., 2000; Lidman et al., 1999). Furthermore, neuronal 

MHC-I has also participated in several pathological conditions such as injury (Maehlen et al., 

1988), infection and treatment with cytokines (Victorio et al., 2012). This evidence suggests 

that MHC-I plays a vital role in both physiological and pathological processes in the CNS. In 

this study, we found that MHC-I was markedly elevated in the spinal cord in  tumor-bearing 

rats. Knockdown expression of MHC-I attenuated mechanical allodynia initiated by tumor 

cell implantation. These findings implied that MHC-I had a significant effect on mediating 

CIBP.  

Expression of MHC-I molecules on the plasma membrane is the key prerequisite for 

antigen presentation and for activation of inhibitory or stimulatory natural killer (NK) cell 

receptors. It has been shown that MHC-I expression in dissociated hippocampal neurons can 

be targeted by cytotoxic T cells (CTLs) and subsequently induce neuronal apoptosis (Medana 

et al., 2000). This is further demonstrated in various classic neurodegenerative disorders such 

as Amyotrophic lateral sclerosis (Holmoy, 2008), Alzheimer's disease (Itagaki et al., 1988; 

Town et al., 2005) and Parkinson's disease that the expression of MHC-I can lead to a 

substantial loss of neurons. In the present study, we showed upregulation of MHC-I 

expressed on GABAergic interneurons in the dorsal horn on day 7 post operation. With the 

increase of MHC-I, we found a significant depletion of GABAergic interneurons. Then, due 

to the loss of GABAergic interneurons, MHC-I expression showed a slow decrease on day 14 

post operation. However, the decrease of GABAergic interneurons can be alleviated by 

specific knockdown of MHC-I in tumor-bearing rats. These results suggest that MHC-I 

expression on GABAergic interneurons contributes to the loss of GABAergic interneurons in 
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tumor-bearing rats. 

Millan (Millan, 2002) postulated that GABAergic interneurons are a critical part of the 

descending inhibitory system in the superficial laminae. The loss of inhibitory tone, or loss of 

modulation by the GABA-releasing interneurons could result in different types of chronic 

pain (Kingery et al., 1988; Xu et al., 1992; Yaksh, 1989). In this study, we showed that 

TUNEL staining was localized in GABAergic interneurons. The result indicated that the loss 

of GABAergic interneurons was caused by neurons apoptosis. We next investigated the 

mechanism of GABAergic interneurons apoptosis induced by MHC-I. Since caspase-3 

activation is an important mediator in the process of apoptosis, we detected the change of 

cleaved caspase-3 during the development of CIBP. Our results revealed that casp-3a 

immunoreactivity was localized in GABAergic interneurons and TUNEL positive cells in the 

spinal cord. Knockdown of MHC-I inhibited the activation of cleaved caspase-3 and 

prevented the apoptosis of GABAergic interneurons. These combined evidences, indicated 

that MHC-I contributed to CIBP by promoting apoptosis of GABAergic interneurons via 

active caspase-3. 

Emerging evidence has highlighted that MHC-I induced neuronal apoptosis is closely 

associated with CD8
+
 T cells in vivo (Cebrian et al., 2014; Sanchez-Ruiz et al., 2008). In fact, 

recently, a body of reports has uncovered the role of CTLs in various autoimmune and 

infectious inflammatory CNS disorders (Friese and Fugger, 2005; Sauer et al., 2013). In these 

disorders, CD8
+
 T cells are considered significant effector cells resulting in neuronal damage. 

Previous studies demonstrated that peripheral immune cells, including T-cells and 

macrophages, are likely to be recruited by chemoattraction, with the leukocytes traveling 
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across concentration gradients produced by chemokines and cytokines in various pathological 

processes (Cao et al., 2014; Jiang et al., 2016; Sapienza et al., 2014; Wu et al., 2015). 

Interestingly, our previous study verified that the chemokines CXCL10 and its receptor 

CXCR3 were markedly elevated in CIBP (Guan et al., 2015; Ye et al., 2014; Zhou et al., 

2015). Moreover, recent studies also demonstrated that CXCR3 could express on the surface 

of CD8
+ 

T cells (Laragione et al., 2011; Tokuriki et al., 2002). The increase of CXCL10 and 

CXCR3 in CIBP may provide a prerequisite for the existence of CD8
+ 

T lymphocytes in the 

CNS. Thus, in this study, we clearly detected CD8
+
 T cells in thelumbar spinal cord of 

tumor-bearing rats.. Interestingly, the sustained increase of CD8
+ 

T cells in the spinal dorsal 

horn was in parallel with the decrease of GABAergic interneurons. Moreover, CD8
+
 T cells 

were colocalized with MHC-I and GABAergic neurons. Together with our current findings, 

these results indicated that MHC-I inducing apoptosis of GABAergic interneurons was 

closely related to CD8
+
 T cells. 

In conclusion, this study has proposed an immunologically-based mechanism involved in 

CIBP. MHC-I is a critical molecule for the process of antigen presentation. Expression of 

MHC-I molecules on the neuron membrane is the key prerequisite for CD8
+
 T cells 

recognizing and attacking neurons. CD8
+
 T cells could identify neuronal MHC-I and finally 

lead to neuron death through Fas/Fas ligand and/or perforin/granzyme pathways (Cebrian et 

al., 2014; Medana et al., 2000; Sauer et al., 2013). And it is also known that no neuronal 

death was triggered in MHC-I knockout mice even with the existence of CD8
+
 T cells 

(Cebrian et al., 2014). In the present study, we provided evidence that MHC-I inhibited 

GABAergic interneurons by promoting its apoptosis and contributed to the development of 
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CIBP.This effect was closely related to local CD8
+
 T cells. However, further studies of 

detailed functions of CD8
+ 

T cells in CIBP are necessary before definite conclusions can be 

drawn. 
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Figure Captions 

Fig.1. Upregulation of MHC-I in spinal cord after cancer development. (a). Double 

immunostain with MHC-I (green) and GABAergic interneurons marker GAD (red) in the 

dorsal horn of sham, tumor, tumor+NC-LV, tumor+RNAi-LV rats on day 14 post tumor cells 

implantation. Amplified pictures with white squares (upper right) showed the co-localization 

of MHC-I (green) and GAD (red). Scale bar: 100μm.(b) Quantification of MHC-I positive 

cells, GABAergic interneurons  on day 7, 14d and 21d after tumor cells implatation. Data 

are expressed as mean ± s.e.m, n=4, *P < 0.05, versus sham group; 
#
P < 0.05, versus 

Tumor+NC-LV rats.Scale bar: 200μm. (d) Quantified data of β2-microglobulin mRNA by 

Real-time PCR in the dorsal horn of different groups. Data are expressed as mean ± s.e.m, 

n=5, *P < 0.05, versus sham group; 
#
P < 0.05, versus Tumor+NC-LV rats. (e) Immunoblot 

analyses show time course of MHC-I protein in the dorsal horn of different groups 

post-sarcoma implantation. Data are expressed as mean ± s.e.m, n = 4, *P < 0.05, versus 

sham group; 
#
P < 0.05, versus Tumor+NC-LV rats. GAD: Glutamate decarboxylase 65+67; 

EGFP: enhanced green fluorescent protein. (TIFF format, 500 dpi, 1.5-column fitting image) 

 

Fig.2. Inhibition of MHC-I by specific β2-microglobulin shRNA attenuated mechanical 

allodynia initiated by sarcoma implantation. Mechanical allodynia were measured by paw 

withdrawal threshold (PWT) before and every 3 days after surgery. Application of 

β2-microglobulin RNAi–Lentivirus showed the reverse of the decline in paw withdrawal 

threshold induced by CIBP.. Data are expressed as mean ± s.e.m, n = 6, *P < 0.05, versus 

sham; 
#
P < 0.05, versus Tumor+NC-LV rats. (TIFF format, 1000 dpi, single column fitting 
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image) 

 

Fig.3. MHC-I induced GABAergic neuronal apoptosis and reduced GAD levels in cancer 

bearing rats. (a) Immunofluorescence showed the expression of TUNEL positive cells (green) 

in the spinal dorsal horn in sham, tumor, tumor+NC-LV and tumor+RNAi-LV rats on day 14 

post tumor cells implantation. Scale bar: 100μm. (b) TUNEL (green), combined with 

immunostaining for GABAergic neuronal marker GAD (red), revealed the apoptosis of 

GABAergic interneurons (white arrow) in spinal dorsal horn at day 14 after cancer 

implantation. Scale bar: 25μm. (c) Quantification of TUNEL positive cells at days 7, 14 and 

21 post-sarcoma inoculation. Data are expressed as mean ± s.e.m, n=6, *P < 0.05, versus 

sham; 
#
P < 0.05, versus Tumor+NC-LV. (d) Immunoblot analyses show the time course of 

GAD protein in the dorsal horn of different groups after tumor cells injection. Data are 

expressed as mean ± s.e.m, n=4, *P < 0.05, versus sham; 
#
P < 0.05, versus Tumor+NC-LV.. 

TUNEL:terminal deoxynucleotidyl transferase (TdT)-mediated DNA nick-end labeling; 

GAD:Glutamate decarboxylase 65+67. (TIFF format, 500 dpi, 1.5-column fitting image) 

 

Fig.4. Apoptosis of GABAergic interneurons via caspase-3 activation. (a) Double 

immunostain with active GABAergic interneurons marker GAD (red) and Casp-3a (green)  

in the dorsal horn of sham, tumor, tumor+NC-LV, tumor+RNAi-LV rats on day 14 post tumor 

cells implantation. Amplified pictures with white squares (upper right) showed the 

co-localization of GAD (red) and Casp-3a (green). Scale bar: 100μm. (b) Casp-3a (green), 

combined with Tunel positive cells (red), revealed Caspase-3 activation in TUNEL positive 
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cells (white arrow). Scale bar: 25μm. (c) Quantification of Casp-3a positive cells at days 7, 

14 and 21 in the dorsal horn of tumor-bearing rats. Data are expressed as mean ± s.e.m, n=4, 

*P < 0.05, versus sham; 
#
P < 0.05, versus Tumor+NC-LV. (d) Immunoblot analyses show the 

time course of casp-3a protein in the dorsal horn of different groups post-sarcoma 

implantation. Data are expressed as mean ± s.e.m, n=4, *P < 0.05, versus sham; 
#
P < 0.05, 

versus Tumor+NC-LV. Casp-3a: cleaved (active) caspase-3; GAD: Glutamate decarboxylase 

65+67. (TIFF format, 500 dpi, 1.5-column fitting image) 

 

Fig.5. Apoptosis of GABAergic interneurons induced by MHC-I was closely related to CD8
+
 

T cells. (a) FACS show representative dot plot examples of CD3 and CD8 expression in the 

monocytes extracted from the spinal cord of the sham group and tumor group as well as the 

lymph nodes in tumor-bearing rats. (b) Quantification of CD8
+
 T cells at days 7, 14d and 21d 

in tumor- bearing rats by FACS. Data are expressed as mean ± s.e.m, n=4, *P < 0.05, versus 

sham. (c) Percentages of CD8 
+
 versus CD4 

+
 among CD3

+
 T cells purified from the spinal 

cord or the lumbar lymph nodes of tumor-bearing rats on day 14 post tumor cells 

implantation. Data are expressed as mean ± s.e.m, n=4, 
#
P < 0.05, versus lumbar lymph 

nodes. (d) Western blot analyses and immunofluorescence results showed up-regulation of 

CD8
+
 T cells in spinal dorsal horn in tumor-bearing rats. Scale bar: 100μm. Data are 

expressed as mean ± s.e.m, n=4, *P < 0.05, versus sham. (e) Double-labeling experiments 

revealed that CD8
+
 T cells were colocalized with MHC-I and GABAergic neurons in the 

spinal dorsal horn of tumor-bearing rats on day 14 post tumor cells inoculation. Scale bar: 

50μm. FACS: fluorescence activated cell sorter. (TIFF format, 500 dpi, 1.5-column fitting 
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Fig. 1
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Fig. 2
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Fig. 3
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Fig. 4
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Fig. 5
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Highlights: 

 MHC-I expression increased on GABAergic interneurons in the spinal dorsal horn of 

bone cancer rats. 

 Increased expression of MHC-I can remove GABAergic interneurons in the spinal cord 

by promoting its apoptosis via caspase-3 signaling pathway. 

 Knockdown of MHC-I with RNAi lentivirus can alleviate the apoptosis of GABAergic 

interneurons in the spinal cord and reversed mechanical allodynia of bone cancer rats.  

 MHC-I induced the apoptosis of GABAergic interneurons is related to CD8
+
 T cells in 

the CNS. 


